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Abstract

Mutagenesis provides insight into proteins, but only recently have assays that couple genotype to 

phenotype been used to assess the activities of as many as a million mutant versions of a protein in 

a single experiment. This approach – “deep mutational scanning” – yields large-scale datasets that 

can reveal intrinsic protein properties, protein behavior within cells and the consequences of 

human genetic variation. Deep mutational scanning is transforming the study of proteins, but 

many challenges must be tackled to fulfill its promise.

As the central players in the cell’s machinery, proteins have been the subject of numerous 

mutagenesis approaches that seek to characterize their function. Nonetheless, our ability to 

measure the effects of mutations in proteins has been limited to a relatively small number of 

mutations. But what if we knew the functional consequences of every possible single amino 

acid change at every position in a protein? What if we knew the biochemical activity of 

hundreds of thousands of different variants of a protein, each containing two, three or even 

more mutations? Recent technologies known collectively as “deep mutational scanning” 

make mutagenesis studies of this magnitude a reality.

The key problem that deep mutational scanning solves is our limited ability to predict the 

most informative mutations in a protein to analyze. Changes to amino acids that are distant 

from binding or active sites can have drastic effects on the thermodynamic stability or 

enzymatic activity of a protein1. Highly conservative mutations, whose consequences can be 

difficult to predict, may be neutral, deleterious or hyper-activating2,3. Multiple mutations 

can combine for unexpectedly large increases or decreases in activity4,5. By enabling the 

impact of mutations to be examined in an unbiased fashion, deep mutational scanning can 

reveal the unexpected. It can also address otherwise intractable cases in which it is necessary 

to measure the activity of a huge number of variants. For example, functional analyses of 

genomes and of protein engineering experiments increasingly demand this scale of data.

Carrying out a deep mutational scan requires an assay amenable to a coupled genotype-

phenotype platform (Fig. 1). Such platforms include cell-based assays, with a protein 
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typically expressed from a plasmid or virus, or in vitro systems, like phage or ribosome 

display. A library of mutated variants of the gene is synthesized, cloned into the appropriate 

vector and introduced, for example, into cells where the protein encoded by the gene carries 

out a function that can be selected for. The selection enriches cells with active protein 

variants and depletes those with inactive ones. The library is retrieved from both input and 

post-selection cells, and the frequency of each variant in the two libraries is determined by 

high-throughput DNA sequencing. The change in the frequency of each variant from input 

to selection serves as a measure of its function. Separation technologies, like cell sorting, 

can also be used to place variants into bins, with the variants in each bin scored by DNA 

read counts.

The assays amenable to deep mutational scanning vary as widely as the activities that 

proteins can display. These include binding of a protein to a peptide, to another protein, to 

DNA, RNA or other ligands, and enzymatic activities such as phosphorylation or 

ubiquitination. Cellular assays can take advantage of a growth or drug selection, or 

expression of a protein that may be fluorescent or epitope-tagged. In vitro approaches can 

enrich active variants based on enzymatic activity, which can be combined with the use of 

an antibody that recognizes a post-translational modification. Because of the astronomical 

scale of DNA sequencing, millions of individual protein variants can be examined in a 

single experiment. This approach has been applied to a growing number of disparate 

proteins in a variety of contexts (Table 1). Nevertheless, establishing the infrastructure to 

carry out a deep mutational scan for the first time can be challenging, but it is becoming less 

so as reagents, software and methods are developed6.

On the simplest level, the large-scale mutational data that result from a deep mutational scan 

reveal the functional consequences of all possible single mutations. These data can be 

organized into a sequence–function map (Fig. 2). Such a map can be viewed as an all-

residue scan, in which each position has been mutated to every other amino acid. These 

maps are dense with information, with each position having a unique pattern of functional 

effects; most substitutions are likely to be deleterious but a few may enhance activity. In 

addition to characterizing the effects of single mutations, deep mutational scanning can also 

examine the effects of multiple mutations. Collectively, these data can yield insights into 

protein structure and function, but gleaning these insights is a challenge that tests both 

experimental and computational biologists.

Inference of fundamental protein properties

A number of biochemical methods are customarily used to directly assay the fundamental 

properties of proteins: for example, chemical denaturation analyzes thermodynamic stability, 

enzyme kinetics reveal mechanism, X-ray crystallography provides structure, and light 

scattering measures particle size. These methods apply purpose-built instrumentation in the 

context of a specialized workflow, generally feasible for no more than a handful of variants.

Instead of using such methods to measure protein properties in a serial fashion, we might 

infer some properties from large-scale mutational data. This approach draws on our 

knowledge of proteins derived from more than a century of study, including principles of 
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how proteins fold and unfold, how they act in catalysis, how they interact with solvent, and 

how they evolve. For a given protein property, such prior knowledge has the potential to 

generate a model or algorithm that relates the functional consequences of mutations to the 

property in question, and the model could be applied to the large-scale data obtained in a 

deep mutational scan (Box 1). This approach could augment and eventually supplant some 

traditional methods that are time-, cost- and labor-intensive. We highlight three areas in 

which this approach has progressed.

Box 1

Interpreting large-scale mutational data

The initial stages of data analysis focus on producing a set of high-quality functional 

scores from raw sequence data51. In the simplest case, reads are aligned to a wild type 

template, variants are enumerated and functional scores are calculated by taking the ratio 

of the frequency of each variant before and after selection37. More complex cases (e.g. 

incorporating time-series data) can be dealt with using linear models13,14. Nevertheless, 

clear standards for analyzing deep mutational scanning data have yet to emerge. Enrich, 

an interactive software package for accomplishing the first data analysis phase, is 

publicly available, but requires command-line expertise to use52. Enrich guides users 

through the process of transforming raw high-throughput sequencing data into a set of 

variant functional scores. Enrich also generates a comprehensive sequence–function map 

from the data. However, deeper analyses of the functional scores are considerably more 

challenging and depend on the questions being asked. In some cases, analytical 

paradigms are already emerging, including those that examine how multiple mutations 

interact and how large-scale mutagenesis data change under different experimental 

conditions. Data analysis remains a significant challenge, but not an intractable one.

For example when engineering a protein or when classifying mutations in a disease-

related protein, the experimenter may be interested only in how single mutations impact 

protein activity. In this case, data for single amino acid substitutions derived from a deep 

mutational scan can be displayed as a heat map relating sequence to function (Fig. 2). 

Further analysis can yield insights into such topics as fundamental proteins properties, 

the behavior of proteins inside cells and the paths of protein evolution, but is typically a 

slow and complex undertaking.

Successful interpretation of deep mutational scanning data starts with proper 

experimental design. Will the experimenter take advantage of a direct selection for a 

protein property of interest? Will the analysis require only single mutations, or will 

multiple mutations be needed? Will the analysis need large numbers of variants or will a 

few thousand suffice? To give an idea of how one might answer these questions, we 

highlight three broad experimental designs and give examples of how an experimenter 

might go about analyzing the resulting data sets.

Direct selection for a protein property of interest results in the most straightforward 

analysis of large-scale mutational data. Examples include:
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• thermodynamic stability of a library of IgG variants was measured using yeast 

display selection and thermal denaturation44

• in vivo protein stability of a library of yeast degron variants was measured using 

a metabolic reporter protein fusion23

• inhibitor resistance of a library of BRAF variants was measured using a cell-

based resistance assay50

Knowledge-based inference is a more complex type of analysis, which can be applied 

when direct selection is not possible for the desired protein property. For example, 

directly selecting for mutations that change an enzyme’s mechanism would be difficult. 

Here, the experimenter selects for protein function without using specialized conditions 

(e.g. higher temperature to select for stability or the presence of an inhibitor to select for 

resistance) and then carries out an analysis that relates the functional scores to the 

property of interest. Examples include:

• thermodynamically stabilizing mutations were identified because they rescue 

multiple destabilizing mutations13

• buried positions were identified because they tolerate fewer substitutions than 

solvent-exposed ones16

• core positions were identified because they exhibit similar patterns of preference 

for hydrophobic amino acids17

• mechanism-altering mutations were identified because they are 

hyperactivating14

In even more complex cases, no analytic framework for the mutational data yet exists and 

will need to be developed. Examples include:

• benchmarking and improving computational approaches for interpreting human 

genetic variation

• improving the correlation of biochemical properties with disease risk

• enhancing de novo protein structure/activity prediction algorithms

• understanding protein evolution

First, because stabilizing mutations can rescue destabilizing mutations7–9, large-scale 

mutational data can be analyzed to identify thermodynamically stabilizing mutations. 

Stabilizing mutations are important for engineering proteins for pharmaceutical or industrial 

uses, and are difficult to identify; most mutations are either neutral or destabilizing. Current 

methods to identify stabilizing mutations have limitations, including poor performance for 

large or atypical proteins, extensive validation requirements, limited output and the 

identification of mutations that, while stabilizing, also result in an unintended loss of 

activity10–12. In previous work, we developed a computational model that measured the 

effectiveness of single mutations to rescue many other deleterious single mutations when 

they co-occur in a doubly mutated variant13. We applied this model to measurements of the 
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peptide binding capacity of ~50,000 variants of a WW domain, and identified new 

stabilizing mutations.

Second, because mutations can perturb enzyme function, analysis of large-scale mutational 

data can reveal aspects of a protein’s catalytic mechanism. Rare variants can be identified 

that have enhanced activity or altered specificity. Such unusual variants were recently 

identified based on the ubiquitination activity of ~100,000 variants of an E3 ubiquitin ligase, 

and these hyperactive variants were used to unlock mechanistic details by further 

biochemical and structural approaches14. Other analyses of enzyme mechanism from large-

scale mutagenesis data make use of the observation that the most mutation-intolerant 

positions in a protein frequently correspond to residues directly involved in contacting the 

substrate or performing catalysis. Another potential starting point are hyperactivating single 

mutations paired with deleterious single mutations that affect folding, stability, substrate 

interaction or other properties. For example, a mutation that enhances catalysis might be 

expected to rescue deleterious mutations that destabilize the protein but not those that block 

substrate binding.

Third, because mutations can perturb protein structure, large-scale mutational data can 

contribute to structural efforts. X-ray crystallography and nuclear magnetic resonance yield 

detailed structures, but do not work for every protein, particularly transmembrane proteins 

and large protein complexes15. De novo prediction of protein structure, while useful, cannot 

routinely provide useful structures of even average-sized proteins. Mutational data can help 

discriminate among predicted protein structures. In one example of such a study, the 

functional consequences of mutation at each position in the bacterial toxin CcdB were 

shown to correlate with distance to the protein surface in a known structure. Adkar et al.16 

used this observation to select accurate predicted CcdB structures from among a large set of 

predictions based on which positions were buried. In another example from our own work, 

positions found to be sensitive to most substitutions except to hydrophobic amino acids 

constituted the core hydrophobic structure of the protein17.

In the future, large-scale mutational data could facilitate the prediction of protein secondary 

structure. Typically, algorithms base predictions on the amino acid preferences in each type 

of secondary structure (α-helix, β-sheet or loop) in a training set of proteins with known 

structures18,19. As an alternative, large-scale mutational data on proteins with known 

structures could also reveal amino acid preferences within structural elements, and the 

resulting preferences used to enhance structure prediction algorithms. A provocative 

challenge is using deep mutational scanning data to generate structural models. We suggest 

that these data could be analyzed to determine co-varying positions in a protein’s sequence, 

with the expectation that these positions will be close by in the three-dimensional folded 

structure. These experimentally determined distance constraints could then be combined 

with protein structure modeling software such as Rosetta to produce a plausible structural 

model20. Indeed the fact that co-variation between positions derived from the natural 

evolution of a protein can be used to predict structure if the multiple sequence alignment for 

the protein is sufficiently large21 hints that this approach is feasible.
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Analysing large-scale mutational data is challenging because the principles according to 

which fundamental protein properties relate to mutational data are not fully understood (Box 

1). In some cases, lessons learned from the study of a small number of mutations will 

generalize well, but in other cases refinement of our understanding will be required. 

Furthermore, these analyses require high quality mutational data in order to succeed. High-

throughput methods are notoriously susceptible to problems with data quality. Thus, 

practitioners will need to develop and apply standards, especially regarding appropriate 

replication and models for controlling systematic and stochastic error. Nevertheless, the 

potential payoff is huge: a common method for understanding fundamental properties of 

proteins in their native environment.

Understanding how proteins behave in cells

Deep mutational scanning can be conducted in cells and thus offers the opportunity to marry 

protein science with cell-based approaches. Furthermore, the power of the technology is 

magnified by the fact that, for a particular protein, scans can be redone in a number of 

“sensitized” backgrounds or conditions (Fig. 3) – a veritable Hershey heaven22 where 

repeating the same experiment with slight alterations yields novel data. We discuss three 

examples of this approach.

First, deep mutational scanning can be used to probe protein-protein interactions. Structural 

approaches for studying protein-protein interactions, such as co-crystallization, yield high-

resolution information but are inherently low throughput. High-throughput approaches, such 

as yeast two-hybrid or mass spectrometry, provide little, if any, structural detail. A library of 

variants can be screened for interaction in cells that overproduce a partner protein. The 

expectation is that a subset of mutations that in the initial (non-sensitized) screen were 

deleterious might be neutral in the presence of a binding partner, revealing positions in the 

protein relevant to the interaction.

Second, mutational scanning can measure the stability in cells of protein variants that are 

tagged with a required metabolic enzyme23. If the stability of the enzyme depends on the 

stability of the variant to which it is fused, then cells harboring a long-lived variant will have 

high levels of the enzyme and grow faster. The influence of protein degradation factors 

could be investigated by varying the level of these factors.

Third, mutational scanning using cell-based protein aggregation models could yield details 

of the biophysical processes driving aggregation in vivo. For example, variants of an 

aggregation-prone protein could be fused to an essential enzyme whose activity diminishes 

as the aggregation state of the variant increases24. Furthermore, by again varying the 

expression of chaperones and degradation factors, the experimenter might better understand 

how these factors identify and degrade aggregation-prone proteins.

Protein evolution and engineering

Experimental evolution approaches offer the opportunity to watch evolution of proteins as it 

occurs, but to date they have been limited either to examining a handful of variants or to 

making population-based measurements. Owing to the vast size of the sequence landscape, 
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conclusions arising from these studies have been incomplete and sometimes contradictory. 

Protein evolution has also been treated theoretically, but many predictions remain untested. 

Deep mutational scanning approaches when applied to experimental evolution of proteins 

offer the ability to explicitly track the fate of hundreds of thousands of sequences 

simultaneously. They can thus begin to address fundamental questions25, such as: How 

many paths can evolution take? How many mutations are required to produce new function? 

Are there many distinct sequences that could evolve to solve the same problem? In short, 

these approaches offer the opportunity to experimentally explore the protein fitness 

landscapes that shape evolutionary trajectories. For example, large-scale mutational data on 

a WW domain13 and on an HIV protease and reverse transcriptase26 revealed that some 

combinations of mutations within variants interact to produce unexpectedly large functional 

effects, leading to the formation of intramolecular mutation interaction ‘hotspots’ within 

these proteins. High-throughput sequencing of T7 RNA polymerase evolving to bind new 

promoter sequences revealed distinct classes of convergently evolved solutions27.

Deep mutational scanning experiments should also be instrumental in realizing the promise 

of protein engineering, which improves existing proteins, and de novo design, which 

imagines novel ones with desired features. Currently, engineering and design efforts proceed 

from rule-based design28 or use blind selection to identify one or a few variants with 

improved functionality among a library. In both cases, deep mutational scanning approaches 

could be transformative, enabling the identification of large numbers of useful mutations 

that can be combined to refine engineered or designed proteins. For example, this approach 

was used to optimize a computationally-designed hemagglutinin-binding protein that 

inhibits influenza virus29, resulting in the identification of five mutations that combined to 

produce a 25-fold improvement in affinity. Traditional affinity maturation approaches would 

not have resulted in the final, high-affinity inhibitor because such approaches cannot 

effectively explore the staggeringly large number of mutant combinations required to find a 

variant with five mutations. Large-scale mutagenesis data offer the opportunity to improve 

the protein design process by enabling designers to exhaustively examine where and why 

their algorithms fail29,30.

Deep mutational scanning and human genetics

A large component of the genetic basis of disease lies in rare variation, with every human 

carrying, on average, ~300 rare, protein-coding variants31. For everyone from physicians, 

pharmacists and patients to casual users of personalized DNA testing, knowing the 

functional consequences of rare mutations in important genes is critical. Most existing 

experimental approaches are not practical for assessing the rapidly increasing number of 

these rare mutations being identified. They simply cannot achieve the scale necessary to 

measure the phenotypic consequences of the variation that can occur in a typical human 

protein, which comprises 375 amino acids subject to 7,500 possible single mutations 

(including to stop codons)32. The challenge is highlighted by the fact that 10% of women 

harboring a missense mutation in the BRCA1 gene, which may predispose them to breast 

cancer, are told they harbor a “variant of unknown significance”33. That BRCA1, one of the 

best-studied proteins, still generates such diagnoses indicates that the situation for the 

average protein implicated in human disease is far worse. Furthermore, we will not be able 
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to repeat the investment of time and money spent on BRCA1 on each of these thousands of 

other proteins.

Currently, computational prediction of the functional consequences of mutations with 

programs like Condel, GERP, Polyphen-2, and SIFT is the best we can do. But these 

computational approaches are limited in their accuracy34. For example, when Condel, 

PolyPhen-2 and SIFT predicted the functional consequences of a set of known deleterious 

mutations, they produced correct and concordant results in fewer than half the cases35. 

Because these tools are based on evolutionary conservation of individual positions and/or 

the physicochemical properties of amino acids, they are relatively successful only on 

average. But they fail in an unacceptably large fraction of cases, making them far from ideal 

for clinical use.

Large-scale mutational data could empower these computational approaches. First, these 

data provide a new resource for benchmarking computational approaches. Second, analysis 

of a modest number of large-scale mutagenesis data sets derived from proteins with diverse 

structures and functions could enhance our understanding of how, in a general sense, 

mutations impact protein function. This information should be useful for improving the 

accuracy of physicochemical models of the impact of mutations. Third, large-scale 

mutagenesis data in model organisms that are selected for their fitness could even contribute 

to developing computational models that predict the effects of mutations on a more complex 

organism.

In principle, experimental characterization of the functional consequences of all possible 

single amino acid substitutions using a deep mutational scanning approach could obviate the 

need for computational inference in interpreting coding variation by furnishing sequence-

function maps of disease-related proteins (Fig. 2). This task seems daunting, as thousands of 

sequence–function maps for proteins with an enormous range of functions would be 

required. However, the challenge may not be quite as formidable as it appears: many 

disease-related proteins fall into well-studied classes like transcription factors, protein 

kinases, surface receptors and DNA repair proteins that may allow some existing, generic 

assays to be used (Fig. 4). No doubt, before such data are applied in the clinic, assays used 

to determine protein function scores must be vetted for their capacity to adequately reflect 

disease risk, pathogenicity or progression. The jury is still out on which in vitro assays will 

do so. Furthermore, a simple functional assay that is amenable to a deep mutational scan 

cannot be generated for every protein. The possible rewards for such an approach are 

nevertheless considerable. A large, coordinated project could, for example, generate 

sequence-function maps for a set of cancer-related proteins, providing an invaluable clinical 

resource.

Unresolved questions

Between the promise and the reality of deep mutational scanning lie many questions. Is there 

as much useful protein information latent within these large datasets as we speculate that 

there is? We have learned already that large-scale mutational data contain a rich array of 

information. But developing analytic methods to reveal some of this information, such as 
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protein structure, will likely require substantial development. Furthermore, it may be 

difficult to design assays that couple some cell-based properties, such as localization or post-

translational modification, to the sequencing readout required for a deep mutational scan.

For an effective scan, the development of an appropriate assay for the function of interest is 

perhaps even more important than the methods used for mutagenesis, library construction, 

sequencing and computational analysis. Can the scale of assay development match the pace 

of progress in DNA synthesis and sequencing? Critically, the selection condition must alter 

or separate library members proportional to their functional capacity, ideally across a wide 

range of activity levels. The assay must enable the production of DNA libraries that are 

amenable to high-throughput sequencing, not a given for every assay. Although we can draw 

on decades of collective experience in crafting these functional assays, choosing and 

calibrating an assay that works at high throughput remains a formidable undertaking.

Will these approaches be put into place soon enough to deal with the deluge of human 

genetic variation, and will the mutational data generated in vitro adequately reflect the 

complex roles of disease proteins? The concern is that simple assays that can be scored at 

high throughput may not adequately reflect human disease. Undoubtedly, the limits of 

simple assays must be respected. For example, assays for proteins that act extracellularly or 

that are poorly conserved are likely not good candidates. Assays for well-conserved 

intracellular proteins will likely be useful, though they will need to be validated to ensure 

they adequately reflect disease risk. Advances in genome editing could pave the way for 

deep mutational scanning experiments in human cell lines, partially alleviating this concern, 

although even human cell-based assays are limited in their ability to model organ or whole-

organism disease phenotypes. We suggest that for proteins with simple molecular functions 

(e.g. metabolic enzymes), large-scale mutagenesis data might have potential for direct use in 

the clinic. For other proteins with complex functions (e.g. signaling proteins), large-scale 

mutagenesis data will need to be combined with an integrative computational model. In 

either case, we will need extensive sets of protein variants whose activity scores can be 

compared to known disease risk and outcome to establish clinical utility of these data.

In summary, deep mutational scanning can be used to generate large-scale mutational data 

for nearly any protein. Because this approach is rooted in a rapidly developing technology – 

high throughput sequencing – it is likely that its power and scope will continue to grow. We 

have highlighted some of the ways in which we predict large-scale mutational data could 

transform protein science. The many challenges to this transformation also provide many 

opportunities to protein scientists. Understanding the vast number of protein variants within 

humans demands that experimental and computational methods be developed. Deep 

mutational scanning strategies provide one avenue to address this need.
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Figure 1. Deep mutational scanning generates large-scale mutational data
Deep mutational scanning draws on high-throughput DNA sequencing to assess the 

functional capacity of a large number of variants of a protein simultaneously. First, a library 

of protein variants is created and introduced into a system where the genotype of each 

variant is linked to a selectable phenotype. Second, a selection for the function of the protein 

is imposed. Variants with high activity increase in frequency, whereas variants with low 

activity decrease in frequency. High-throughput DNA sequencing is used to measure the 

frequency of each variant before and after selection. These frequency data are analyzed to 

generate functional score for each of the protein variants.
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Figure 2. Large-scale mutational data illustrate how protein sequence impacts function
A hypothetical sequence–function heat map is shown for a 25 amino acid long portion of a 

protein, illustrating the functional consequences of making every single amino acid mutation 

at every position. Positions are indicated numerically, and each mutation is indicated by its 

single letter code. The color of each element of the heat map illustrates the functional score 

of the indicated mutation
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Figure 3. Deep mutational scanning in sensitized backgrounds as a strategy for uncovering 
protein features
Hypothetical sequence-function heat maps collected under different conditions are shown. 

Once a deep mutational scan has been performed, it can be repeated in a sensitized 

background, which can be created by altering the cellular or chemical environment in which 

the scan is conducted, as indicated. The difference in functional effect for a particular 

mutation in a sensitized background could reveal the importance of an amino acid at a given 

position for the process under study.
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Figure 4. Sequence–function maps of proteins important in disease
A hypothetical cancer cell is shown; mutations in drug transporters, drug metabolic 

enzymes, transcription factors, and signaling proteins all have the capacity to influence the 

effectiveness of treatment. Deep mutational scanning of cancer-related proteins could 

revolutionize our understanding of the consequences of mutations in these proteins and 

enable genomic medicine.
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Table 1

Deep mutational scanning targets

Scanned protein Model Selection

Fab antibody fragment36 Ribosome display Ligand binding

YAP65 WW domain13,37 T7 bacteriophage Ligand binding

E4B ubiquitin ligase14 T7 bacteriophage Ubiquitination activity

PKA regulatory subunit38 T7 bacteriophage Ligand binding

Synthetic PDZ domain39 M13 bacteriophage Ligand binding

CcdB16 E. coli Toxin activity

PSD 95 PDZ domain40 E. coli Ligand binding

G protein-coupled receptor41 E. coli Ligand binding

Designed influenza inhibitor29 S. cerevisiae surface display Ligand binding

Designed lysozyme inhibitor42 S. cerevisiae surface display Ligand binding

Designed digoxigenin binder43 S. cerevisiae surface display Small molecule binding

IgG1 CH3 domain44 S. cerevisiae surface display Ligand binding after thermal stress

Hsp9045,46 S. cerevisiae complementation Growth rate

Matα2 degron23 S. cerevisiae fusion protein Growth rate

Ubiquitin47 S. cerevisiae complementation Growth rate

Pab117 S. cerevisiae complementation Growth rate

Neuraminidase48 Mammalian cell Oseltamivir resistance

IgG CDRs49 Mammalian cell display Ligand binding

BRAF50 Mammalian cell Vemurafenib resistance
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