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Protein structure prediction from sequence variation
Debora S Marks1, Thomas A Hopf1 & Chris Sander2

Genomic sequences contain rich evolutionary information 
about functional constraints on macromolecules such as 
proteins. This information can be efficiently mined to detect 
evolutionary couplings between residues in proteins and 
address the long-standing challenge to compute protein 
three-dimensional structures from amino acid sequences. 
Substantial progress has recently been made on this problem 
owing to the explosive growth in available sequences and 
the application of global statistical methods. In addition to 
three-dimensional structure, the improved understanding of 
covariation may help identify functional residues involved in 
ligand binding, protein-complex formation and conformational 
changes. We expect computation of covariation patterns to 
complement experimental structural biology in elucidating the 
full spectrum of protein structures, their functional interactions 
and evolutionary dynamics.

In the past 50 years, there has been tremendous progress in experimen-
tal determination of protein three-dimensional structures, but this has 
not kept pace with the explosive growth of sequence information that 
results from massively parallel sequencing technology. We therefore 
know many more protein sequences than protein three-dimensional 
structures, and the gap is widening rather than diminishing. Yet as the 
Anfinsen legacy suggests1,2, many proteins contain enough informa-
tion in their amino acid sequence to determine their three-dimensional 
structure, thus opening the possibility of predicting three-dimensional 
structure from sequence.

Computational prediction of protein structures, which has been a 
long-standing challenge in molecular biology for more than 40 years, 
may be able to fill this gap, if done with sufficient accuracy. Many useful 
and quite accurate three-dimensional models have been computed from 
amino acid sequences by using the similarity of the protein sequence of 
interest to another protein whose three-dimensional structure is known, 
often called template or homology model building3,4. However, correct 
de novo predictions from sequence, when not a single structure in a 
protein family is known, have been hard to achieve, as the pioneer-
ing Critical Assessment of Techniques for Protein Structure Prediction 
(CASP) evaluation of blinded predictions has demonstrated over the 
past two decades5,6. Some of the best recent state-of-the-art approaches 
to de novo folding, such as Rosetta, are based on searching for sequence-

similar fragments in three-dimensional structure databases followed by 
fragment assembly using empirical intermolecular force fields7. Such 
approaches have worked favorably in cases for smaller proteins that have 
fewer than ~90 amino acids7 and need to be combined with experimental 
data for larger proteins8,9. Other approaches attempt to predict residue 
contacts using three-dimensional information with machine-learning 
techniques, such as support vector machines, random forests and neural 
networks, but contact prediction accuracy remained “still quite low”10 
with substantial improvements to models achieved only for some small 
proteins11,12. Clearly, and unfortunately, the de novo structure prediction 
problem does not scale13, the conformational search space increases 
exponentially as the size of the protein increases, presenting a funda-
mental computational challenge, even for fragment-based methods14. In 
this sense, the general problem of de novo three-dimensional structure 
prediction has remained unsolved.

Covariation and the problem of transitive correlations
A substantial step forward in protein-structure prediction is now on 
the horizon based on the power of evolutionary information found in 
patterns of correlated mutations in protein sequences (Fig. 1a). The 
extraordinary improvements in DNA sequencing technology, aided 
by advanced statistical analysis, have now provided the keys to unlock 
this evolutionary information. Several groups have demonstrated that 
extracting covariation information from sequences is sufficient not 
only to estimate which pairs of residues are close in three-dimensional 
space15–21 but also to fold a protein to reasonable accuracy15,22–25 (Table 
1). In addition to being predictive of contacts in a protein, these pairs of 
covarying residues should also be predictive of functional sites (Fig. 1b), 
protein interactions and alternative conformations15,16,22.

The most successful approaches deal with a well-known statistical 
problem, as elegantly stated in the 1920s by Sewall Wright26: “The ideal 
method of science is the study of the direct influence of one condition 
on another in experiments in which all other possible causes of variation 
are eliminated.” For the problem of correlated mutation analysis, to find 
true evolutionary covariation between residues, one must minimize the 
effect of transitive correlations—that is, false positive correlations that 
are observed, for example, when two residues contact the same third 
residue but do not actually contact each other. For example, if residues 
A and B contact each other, as do residues B and C, then there is in gen-
eral, a transitive influence observed between residues A and C (‘chain-
ing effect’17,27). As residues can contact many other residues (not just 
one), transitive effects occur across the network, and pairs of residues 
that are correlated as computed using a ‘local’ statistical model, such as 
mutual information scores, are not necessarily functionally constrained 
or close in space (Fig. 2). Local statistical models (below referred to as 
local models or local methods) assume that pairs of residue positions are 
statistically independent of other pairs of residues (Table 1 and Fig. 2). 
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takes into account effects from conservation of single residue positions. 
Global approaches yield high coupling scores only for pairs or residue 
positions that are likely to be causative of all the observed correlations. 
Residue pairs with high globally derived coupling scores are most likely 
to represent the true interactions between residues deduced from the 
evolutionary history of the protein. In contrast, local information–based 
methods, which treat each pair of residue positions independently, 
will have high ranking correlations that are not necessarily causative 
and such correlations can be even greater than the causative correla-
tions. Noncausal correlation is well understood in statistical physics; it 
includes, for instance, long-range order observed in spin systems, where 
in fact the spins only have short-range direct interactions, and is called 
‘chained covariation’27,34. In essence, global statistical approaches for 
analysis of protein sequences address this question: given all pair cor-
relations, which ones best explain all the others? Or, as in other areas of 
statistics, how does one go from correlation to causation26?

Transitive correlations removed by global statistical approaches
One global statistical approach is known as entropy maximization under 
data constraints, a classic inference method connecting information the-
ory and Boltzmann statistics35. Maximizing entropy under constraints36 
has been successfully used in statistical physics and other areas of  

In real proteins, however, residues can contact many other residues, and 
their cooperative interaction is crucial to the protein structure and func-
tion. In the 18-year history of contact-prediction methods using cor-
related mutations, all methods used local mutual information or other 
local statistical models28–33, with one notable but unnoticed exception17.

Although these local methods have been used to make some improve-
ments in contact prediction or identification of functional residues, they 
have not been used successfully to predict three-dimensional structures 
from sequence information alone presumably for two main reasons. 
First, local statistical models do not deal with transitive correlations, 
and second, such models do not adequately take into account important 
information in conserved positions33. Other confounding effects that 
have prevented high-accuracy prediction of residue contacts include 
uneven representation of family members in sequence space, statistical-
noise as the result of an inadequate number of sequences in the family as 
well as phylogenetic effects. Whether or not explicit removal of quantifi-
able phylogenetic effects can be productively added to the suppression 
of transitive correlations in global models remains an open question.

In contrast, a ‘global’ modeling approach treats correlated pairs of resi-
dues as dependent on each other, rather than as statistically independent, 
thereby minimizing the effects of transitivity and spurious noise. This 
approach also uses globally consistent single-residue marginals, which 

Figure 1  Reading the sequence record for evolutionary constraints.  
(a) Evolutionary pressure (left) to maintain favorable interactions 
between physically interacting amino acid residues (red circles) in the 
three-dimensional fold of a protein (curved line) leaves a visible record 
of residue covariation (double-headed, dashed arrow) in related protein 
sequences (aligned horizontal lines). The inverse problem of inferring 
(right) directly causative residue couplings (evolutionary couplings) from 
the covariation record is challenging because of transitive correlations and 
other confounding effects, but once evolutionary couplings are determined 
(double-headed dashed arrows on curved protein chain), they can be used 
to predict the unknown three-dimensional structure of a protein (ribbon, 
right) from a set of sequences alone. (b) Residues subject to a high number 
of evolutionary pair constraints (double-headed, dashed arrows; left) 
represent likely functional hotspots (large red dot). Such highly constrained 
residues include residues in functional sites (for example, interaction with 
external ligands, red dots on right) that may not be detectable by analysis 
of single-residue conservation.

Table 1  Statistical models for predicting coevolution between protein residues
Method Statistics Reference Predictions

Global
(contacts and 
three  
dimensions)

EVfold, ECs Maximum entropy 15 Three-dimensional folds (globular); evolutionary couplings

EVfold-transmembrane Maximum entropy 22 Three-dimensional folds (transmembrane); functional residues; 
conformational change; oligomers

DCA-fold Maximum entropy 23 Three-dimensional folds (globular)

FILM3 Partial correlations 24 Three-dimensional folds (transmembrane)

Global

(contacts)

Boltzmann network model Maximum entropy 17 Residue contacts; stability changes

Bayesian network model Conditional ratio of spanning trees 19 Residue contacts

PsiCov Sparse inverse covariance estimation 20 Residue contacts

DCA-BP Maximum entropy, belief propagation 21 Protein-protein contacts

DCA–mean field Maximum entropy 16 Residue contacts; oligomer contacts

Local

Correlated mutation analyses Correlations 29–31 Residue contacts

MI, SCA, McBasc, OMES (Weighted) mutual information; sub-
stitution correlations; observed minus 
expected

33 Residue contacts

MIp Phylogeny-corrected mutual informa-
tion

60 Residue contacts

SCA Weighted mutual information 51 Sets of functional residues

EVfold, evolutionary coupling analysis and folding. ECs, evolutionary couplings or contraints. DCA-fold, direct coupling analysis and folding. DCA-BP, direct coupling analysis and 
belief propagation. FILM3, folding in lipid membranes. MI, mutual information. McBasc, McLachlan-based substitution correlation. OMES, observed minus expected squared. 
MIp, positional mutual information. SCA, statistical coupling analysis.
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the covariance matrix (the observed minus expected pair counts) of 
dimension (20L)2, where L is the length of the protein sequence, by 
counting how often a given pair of the 20 amino acids, say alanine and 
lysine, occurs in a particular pair of positions, say position 15 and 67, in 
any one sequence, summing over all sequences in the multiple-sequence 
alignment. This large matrix contains the raw data capturing all residue 
pair relationships across evolution up to second order (pairs, not triplets 
or higher). One can then compute a measure of causative correlations, 
the conditional mutual information, in the global statistical approaches 
by taking the inverse of the covariance matrix. That such a matrix inver-
sion results in a measure of causative correlations is well known in the 
statistical theory of Gaussian multivariate distributions of continuous 
variables40.

An analogous derivation for discrete-state biological sequence analy-
sis is, for example, based on a mean-field expansion in analogy to statisti-
cal physics16. The resulting explicit probability model for a sequence in 
the particular protein family resulting from inversion of the covariation 
matrix contains numerical estimates of direct pair interactions. These 
are directly and simply computed from the raw data in the covariation 
matrix, in contradistinction to machine-learning methods that rely on 
parameter fitting in learning sets and cross-validation in test sets. The 
pair interaction terms can also be interpreted as residue-residue pair 
energies, in analogy to pair terms in a Hamiltonian energy expression 
in statistical physics. The conditional mutual information between a 
pair of positions derived using the global statistical approach becomes 
a useful predictor of residue-residue contacts.

The maximum-entropy approach to potentially solving the problem 
of protein structure prediction from residue covariation patterns was 
first described by Lapedes and collaborators17,27. However, instead of 
inversion of the covariance matrix, they used a more computationally 
demanding Monte Carlo method (that is, iterative exploration of the 
best set of pair interactions values) to derive the probability terms in 
conditional mutual information. Although Lapedes and Jarzynski did 
not compute three-dimensional structures, they reached a first break-
through in contact prediction in 2002 for 11 small proteins and reported 
50–70% accuracy for top 20 contact predictions, in contrast to 35–45% 
accuracy with the previous best methods available17.

A more recent independently derived implementation of the  
maximum-entropy approach used an iterative parameter-estimation 
technique for deriving the pair-interaction parameters known as belief 
propagation21. This was superseded by a much more efficient mean-field 
approximation, in which the parameter estimation problem was solved 

statistical inference37–39, and the conditional mutual information 
derived from correlations between positions in a protein sequence is a 
discrete, nonlinear analog of partial correlation analysis40. In contrast 
to simple mutual information, the conditional mutual information can 
be thought of as the degree of covariation between residues at positions 
a and b that is due solely to direct effects of a on b, factoring out contri-
butions to the correlation that are caused by interaction of both a and b 
with the rest of the network of residues.

The first step in the practical application of such global approaches 
is to create a multiple sequence alignment between many members of 
an evolutionarily related protein family (Fig. 2). Next, one calculates 

Build multiple sequence 
alignment for target 
sequence

Calculate co-occurrence 
frequencies for all pairs of 
columns for all amino acids

Derive causative correla-
tions (predicted contacts) 
by using global probability 
model for sequences 
(see Fig. 2b) 
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distance constraints
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three-dimensional 
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Figure 2  Deriving folded three-dimensional structure for a target protein 
sequence. (a) Workflow as implemented on the publicly available web server 
EVfold.org. Related methods (Table 1) follow similar steps, but details differ. 
The amino acid sequence of the target protein is used to perform a database 
search for putative structural homologs, with attention to the optimal cutoff 
in sequence similarity so that sufficient sequences are available yet they 
are not too far diverged to lose subfamily specificity. Minimally, hundreds of 
sequences are needed to derive plausible causative evolutionary couplings. 
For ten candidate structures for a medium-sized protein (~200 residues), 
the computation takes less than an hour on a typical laptop computer.  
(b) The principal confounding effect dealt with by global probability models, 
but not by the local models, is that of transitive (indirect) correlations 
that do not reflect causative evolutionary constraints on interactions. For 
example, correlations between residues A and B, residues A and D, and 
residues D and C are causative because they reflect direct interactions, 
whereas residues A and C show transitive correlation owing to their mutual 
direct interactions with residue D. The transitive correlations, in special 
cases, can have numerically stronger correlation values than causative 
correlation, for example, if two noninteracting residues have in common 
several neighbors27, thereby confounding structure prediction.
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riance scores using a standard distance geometry algorithm, first pio-
neered and then ubiquitously used to solve three-dimensional structures 
with experimental constraints deduced from NMR spectroscopy data41. 
This is then followed by simulated annealing by molecular dynamics to 
ensure the correct bond lengths and plausible side-chain conformations. 
In a benchmark test on known structures, all-atom three-dimensional 
coordinates were predicted from sequence alone for 15 diverse globu-
lar folds of up to 220 amino acids and for eight folds with 100 or more 
residues15. The predicted structural elements were correctly placed in 
three-dimensional space, with an overall accuracy of as low as 2.8–5.1 
Å Ca r.m.s. deviation relative to the experimentally determined struc-
tures. Predictions for enzymatic proteins were the most accurate, and 
the quality of prediction was robust to false positive predicted contacts.

To compare alternative global statistical methods, we (D.S.M. and col-
leagues15) also have folded proteins using residue contacts predicted by a 
Bayesian network model19, reporting three-dimensional structure error 
between 4 and 6 Ca r.m.s. deviation, at somewhat lower accuracy than 
with contacts predicted by the maximum-entropy formalism15. Using 
EVfold contacts and folding protocol, the accuracy of atomic coordinates 
were reported to be best (down to ~1 Å all-atom over 5–10 residues) 
around active sites. Plausibly, this reflects strong functional requirements 
for protein-ligand interaction, such that active-site residues are multiply 
constrained by interactions between pairs of residues (Fig. 1b).

The quality of the predicted folds, and the number of cases in which 
this works, is likely to improve in time, given the observation15 that 
more sequence information tends to lead to higher accuracy of distance 
constraints. And the currently limited atomic accuracy (in the range 
of 2–5 Å Ca r.m.s. deviation) of the successful de novo structures is 
likely to improve with advanced molecular dynamics refinement meth-
ods resulting in more accurate atomic coordinates (for example, using 
the molecular dynamics and refinement software Cystallography and 
NMR System (CNS)42, Rosetta43, the deformable elastic network (DEN) 
approach44 or the Anton massively parallel special purpose computer45).

The structures of membrane proteins are notoriously difficult to 
determine by crystallography or NMR spectroscopy. Using a maxi-
mum-entropy approach, one of our groups (T.H. and colleagues22) 
recently has tested the ability to predict the three-dimensional struc-
tures of membrane proteins on 25 membrane proteins with up to 487 
residues (up to 14 transmembrane helices) from 23 structurally diverse 
families, excluding information from homologous three-dimensional 
structures and sequence-similar fragments. The protein set included 
examples from important functional classes, such as G protein–cou-
pled receptors (GPCRs) and membrane transporters22. The EVfold-
membrane protocol provides a ranked set of predicted structures 

by inverting the correlation matrix15,16, as currently used by the EVfold 
and DCA-fold structure-prediction methods. Other implementations 
have used derivatives of partial correlation approaches, where ‘partial’ 
refers to computing direct residue-residue correlations after removal 
of transitive effects. These methods used Bayesian network inference19 
and sparse inverse covariance estimation20, which leads to equations 
that are similar to those derived with the maximum-entropy approach 
in the mean-field approximation to eliminate the effect of transitive cor-
relations. After removal of transitive correlations and other confound-
ing effects, predicted contacts based on the global probability models 
provide a base for the computation of three-dimensional folds.

From contact predictions to protein folding
To what extent does improved contact prediction lead to improved de 
novo prediction of three-dimensional structures? We developed (D.S.M. 
and colleagues15), a folding protocol, EVfold, in which predicted residue 
contacts from coevolution patterns are translated into detailed atomic 
coordinates by using distance restraints placed on an extended polypep-
tide (Fig. 2). In this method, a three-dimensional structure is calculated 
by constraining the distance between pairs of residues with high cova-
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Figure 3  High-ranking evolutionary constraints correspond well to 
experimental structure contacts in blinded tests, encouraging prediction 
of unknown structures. (a) Blinded prediction test for a globular protein. 
Dots in plots on left represent contacts between residues in a protein. 
Residue pairs with high coevolution scores from local models based on 
mutual information are mostly not close in three dimensions (blue dots), 
whereas high-ranking evolutionary constraints (red dots) correspond well 
to experimental structure contacts (gray). The same number of predictions 
are shown in each triangle (same number of blue and red dots). The high 
accuracy of prediction of evolutionary constraints allows the prediction of the 
all-atom three-dimensional structures of globular proteins, shown as a ribbon 
diagram of the human oncoprotein RAS (red, evolutionary coupling–based 
prediction; gray, crystal structure; Uniprot identifier RASH_HUMAN; PDB 
identifier 5p21)15. (b) Blinded prediction test as in a for a transmembrane 
protein (Uniprot identifier GLPT_ECOLI; PDB identifier, 1pw4 (ref. 22).  
(c) Example of prediction of a medically important protein of unknown three-
dimensional structure, ATP-binding cassette sub-family G member 2 (alias, 
breast cancer resistance protein, Uniprot identifier ABCG2_HUMAN)22.
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couplings, with or without assumed native (experimental) secondary 
structure and statistical potentials derived from a set of known proteins 
unrelated to those folded. The derivation of predicted contacts uses 
essentially the same maximum-entropy approach as EVfold, and the 
structures are generated from a one-bead-per-residue representation, 
followed by generation of all-atom coordinates. The results generated 
with known or predicted secondary structure are comparable to those 
of EVfold, at least for smaller-length proteins reported.

Each of these three approaches to folding from evolutionary con-
straints predicted residue contacts from correlated mutations at much 
higher accuracy than did previous contact prediction methods (Box 1). 
They often reached the correct fold (that is, correct topography of sec-
ondary structure elements in three dimensions; 2–6 Å Ca r.m.s. devia-
tion), which is unprecedented without the use of three-dimensional 
fragments and unprecedented for any proteins over 100 residues, even 
with the use of three-dimensional fragments. The three approaches 
differ in details of the statistical models, the use of predicted second-
ary structure and the protocol for generating atomic coordinates of 
predicted folded three-dimensional structures, for example, with or 
without the use of sequence-similar database fragments and in all-
atom or residue-center representation. EVfold uses the least existing 
structural information of all three approaches and therefore showed the  

for each protein, which was then compared with the corresponding 
crystal structure. Accuracy results ranged from Ca r.m.s. deviation of  
2.6 Å to 4.8Å over >70% of the length and template modeling scores46 
of 0.5–0.7, which are notable for de novo predictions of proteins of this 
size (Fig. 3).

Several other global statistical modeling approaches have since been 
used to predict residue contacts for use in folding protocols. The Jones 
group24, using a method called FILM3, predicted accurate all-atom 
three-dimensional structures of membrane proteins using an evolu-
tionary coupling term added to an earlier fragment-based prediction 
method. They predicted the structure of 32 known membrane proteins 
with template modeling scores of ~0.25–0.75 (folds with scores >0.5 
are considered essentially correct). From a first set of results on known 
structures they derived an empirical ranking protocol that can be used 
to objectively select structures such that template modeling scores are 
likely to exceed 0.47. This level of accuracy is comparable with that of the 
EVfold method, although unlike FILM3, EVfold uses no experimentally 
determined protein fragments nor known membrane protein Z-plane 
coordinates.

The Onuchic group23, using a protocol called DCAfold, predicted 
three-dimensional structures of 15 bacterial protein domains up to 133 
residues (in their test set) using the information content in evolutionary 
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Figure 4  Beyond three-dimensional folds: predicting protein complexes and functional interactions. (a) Besides the prediction of monomer three-dimensional 
structure (‘within self’), in principle, evolutionary couplings can be used to deduce additional functional interactions (between a target protein and other  
proteins or ligands), the transmission of information and conformational plasticity. (b) Evolutionary constraints reflect the coevolution of residues in 
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affected by multiple high-ranking evolutionary constraints, which reflect the requirements of a particular spatial arrangement of binding residues, even in 
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the next few years and will benefit from the continuing rapid growth 
in the number of sequences in protein families and of known protein 
families.

Applications of improved structure-prediction methods
Beyond benchmarks, the value of three-dimensional structure predic-
tion methods is best established over time by making biological dis-
coveries, in unknown territory. Notably, evolutionary couplings, even 
with transitive correlation effects removed, can be caused by diverse 
functional effects, of which the formation and stability of the folded 
three-dimensional structure is only one (Fig. 4a). Several applications 
are possible.

Proteins with unknown structures. The first published exercise of 
prediction in unknown territory using the EVfold method focused on 
medically interesting transmembrane proteins (Fig. 2c) associated with 

potential for the prediction of unknown folds. DCAfold showed how 
using evolutionary constraints with very detailed experimental informa-
tion about secondary structure can predict native-like three-dimensional 
structures. FILM3, for membrane proteins, showed that using fragments 
from globular proteins and information from membrane protein sec-
ondary structure may increase prediction accuracy. It is reasonable to 
expect that use of any independent empirical information or advanced 
refinement protocols can improve the accuracy of predicted coordi-
nates from the new covariation methods. Taken together, these global 
approaches for calculating sequence-derived constraints show the power 
of evolutionary information and the potential to increase the accuracy of 
predicted three-dimensional structures by adding limited experimental 
data. Going all the way from multiply aligned sequence families via 
predicted residues couplings and contacts to often well-folded predicted 
three-dimensional structures has now been achieved in several reports 
(Table 1)15,22–24. These implementations may be broadly applied over 
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Figure 5  Future applications. (a) Although experimental structure-determination in structural biology laboratories or structural genomics centers is highly 
productive (solid black line), it cannot keep up with the pace at which new protein families are being discovered by high-throughput sequencing (solid gray 
line). The number of three-dimensional structures that can be reasonably predicted using evolutionary conservation (solid red line) was estimated by a linear 
extrapolation in the log plot of the exponential growth inset. We expect the growth curves to saturate in the future (dashed lines), but there is no indication 
this will happen in the next couple of years, and indications are that a large increase in the number of protein families may be apparent from multispecies 
(metagenomic) sequencing58. (b) Of the 1,250 alpha-helical transmembrane protein families known in mid-2012, 107 have solved experimental three-
dimensional structures and another 200 are accessible to solution by evolutionary constraints in 2012. By 2015, we estimate an additional 500 of these 
2012 families will become accessible to fold prediction by coevolution methods (Pfam numbers courtesy of J. Mistry and M. Punta). Similar extrapolations 
can be made for other protein structure classes, such as β-sheet transmembrane proteins or globular water-soluble proteins. (c) A comparison of methods 
for three-dimensional protein structure determination showing the complementary nature of various features from different approaches. ‘Sequence needs’ 
refers to the number of sequnces needed to solve the three-dimensional structure; ‘Existing 3D needs’ refers to the number of homologous sequences 
needed to solve structure. ‘Coverage’ refers to the ability to solve a large fraction of existing proteins given sufficient sequence information. Not included 
in our comparison matrix are large specialized hardware computational methods for protein structures such as Anton, which though providing insights into 
protein dynamics and folding are not yet easily reproducible59. (d) Hybrid methods using all three computational approaches in c, with easier to produce 
experimental data, may greatly increase the number of protein structures and complexes, which are currently not in reach of experimental methods alone. 
EM, electron microscopy.
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A recent example has shown the accuracy of the evolutionary con-
straints in identifying multimer contacts (Fig. 4b), including dimer 
contacts for an Escherichia coli methioinine transporter, tetramer con-
tacts for a cataract disease protein and predicted dimer contacts for the 
de novo–predicted structure of the adiponectin receptor22. Similarly, 
another report16 has demonstrated that three of the top 20 predicted 
contacts for an ATPase domain were false positives for the monomer 
but true positives for the multimer. Both reports showed that ~50–70% 
of the top predicted contacts that are not intradomain contacts, are 
inter-domain contacts from multimeric assemblies.

Such an algorithm can help with monomer folding accuracy, if the 
conflicting oligomer contacts are removed in the process of computing 
the monomer structure. A related but actually simpler problem is that 
of predicting pairwise protein–protein interactions21,47,48. Assembly 
of protein complexes from evolutionary couplings should also be pos-
sible, in analogy to the computation of the higher-order structure of 
the nuclear pore complex49 from interactions between pairs of residues 
deduced for mass spectrometry data.

Functional sites and signal transmission. As prediction accuracy using 
evolutionary couplings is generally higher near active sites and binding 
sites, it is reasonable to hypothesize that strong pair constraints are a 
signature of functional constraints. This can be generalized and applied 
to the prediction of functional elements in two ways. First, one can use 
the cumulative strength of evolutionary couplings for a particular resi-
due as a measure of the effect of functional selective pressure on one 
residue (that as a single residue does not have to be strongly conserved). 
Second, one can identify chains of residue pairs with high evolution-
ary coupling values as potential chains of transmission of information, 
which is particularly interesting in transmembrane receptors. Such  

diabetes, obesity, Crohn’s disease, breast cancer, a hereditary optic neu-
ropathy, Alzheimer’s disease or Parkinson’s disease. The predicted sev-
eral hundred all-atom three-dimensional models for each protein were 
ranked according to an empirical score, with the top ranking thought 
to be more likely to be correct. Such predicted structures can be used 
for functional interpretation and design of targeted experiments (all 
three-dimensional coordinates available at http://www.EVfold.org/). 
A particularly interesting application is the identification of putative  
binding and interaction sites and possibly computational drug screen-
ing, which is not unreasonable in light of the higher accuracy near active 
sites in the benchmarks (Fig. 4). A search of predicted structures against 
experimentally known structures in the Protein Data Bank (PDB) for 
similar folds can be used to determine whether a predicted structure 
is a new fold or to discover unexpected evolutionary relationships. 
Such unexpected ‘remote homologies’ are either indicative of remote 
evolutionary relatedness not easily detectable at the sequence level, or 
indicative of convergent evolution to particularly advantageous or easily 
accessible folds22.

Protein oligomers and complexes. Functional constraints have an 
effect on a protein sequence through interactions, but not all of these 
are internal to the protein. Thus, analysis of evolutionary covariation 
may also reveal constraints imposed by protein oligomers or com-
plexes made of identical (homo-oligomers) or different (hetero-oligo-
mers) types of proteins. For homo-oligomers, interactions between 
monomers can be false positives when considering intramonomer 
contacts. In de novo structure prediction, one needs an algorithm that 
disambiguates between intramonomer and intermonomer contacts in 
an oligomer, as is needed in structure determination of oligomers by 
NMR spectroscopy.

Box 1  Three-dimensional structure from coevolution patterns—why does it work?

The recent substantial progress in contact prediction and de novo folding reviewed here, against a background of several decades of slow 
improvement5, raises the question of what are the key enabling factors. The answer is threefold: first, the power of evolutionary selection, 
with functional constraints conserved over large evolutionary distances; second, the recent increase in the amount of available sequence 
information61; and third, the recently honed mathematical ability to compute global (cooperative) rather than local (factorized) probability 
models. When combined with computational methods for generating structures of biological macromolecules from distance constraints 
that had been originally developed for experimental NMR spectroscopy, these three factors lead to substantially improved prediction of 
protein three-dimensional structures from sequences alone.

Precise information in the evolutionary sequence record. Reading of the evolutionary record in protein sequences over the past four 
decades has revealed the remarkable conservation, yet flexible adaptation, in many protein structures and sequences across large 
evolutionary distances. Protein science has yielded a detailed understanding of how functional constraints at the level of the organism 
percolate down to the level of cellular processes and functional protein molecules. Notably, evolutionary imprints of functional constraints 
are visible in single sequence positions in a set of aligned, evolutionarily related proteins (a ‘family’). More subtle, but equally notable, is 
the realization, not unlike that for RNA structures but less obvious, that evolution appears to have left a clear imprint detectable not only as 
conserved single-residue characteristics, but also as constrained interaction signatures in residue pairs. Sequence information in carefully 
assembled protein families is a gold mine for computational analyses of evolutionary interaction constraints.

Growth in sequence databases from massively parallel sequencing. A nontrivial challenge for detection of this evolutionary information is 
the availability of sufficient sequences of sufficient diversity. Fortunately, known protein families are growing in size, typically from a few 
sequences to many thousands of sequences. The pace of growth has been faster as the result of advances in DNA sequencing technology 
over the past decade or so. The recent progress in de novo protein-structure prediction builds directly on the enormous corpus of sequence 
information.

Reduction of conformational search space by cooperative probability models. The global probability models account for the fact that 
interactions along an entire protein chain are mutually interdependent in a way that is inherently cooperative (pair interactions are 
modified by interactions with other parts of the system) and cannot be factored (probabilities are not a simple product of independent 
terms). In this way, the early realization that protein folding is a cooperative process is reflected in the application of statistical approaches 
using maximum entropy or partial correlations. Both of these methods capture interdependency effects between pairs, in particular the 
confounding transitive correlations (Fig. 2b). Compared with massive and impressive molecular dynamics simulations, the statistical 
approaches are many orders of magnitude more efficient in reducing a huge conformational search space to manageable proportions.
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of genomic samples from a diverse set of species. A reasonable extrapola-
tion predicts that within a few years most of the current 15,000 protein 
families (as defined by PFAM-A55) will have sufficiently many known 
sequences to yield a robust evolutionary coupling signal (Fig. 5a). In 
addition, conservative extrapolation suggests that another 500 of the 
~1,300 currently known transmembrane protein families will be ame-
nable to folding with evolutionary constraints (Fig. 5b). Of course, new 
families will also join the known universe of sequences, at a rate that is 
hard to predict56, but it is likely that the absolute number of correctly 
predictable protein folds will rise sharply into the many thousands over 
the next few years. None of the methods reviewed here have been tested 
yet in the CASP competition (http://predictioncenter.org/casp10/) but 
one can assume researchers using the new methods will enter the CASP 
competition in the future.

Signatures of evolutionary constraints may be left in sequences as a 
result of forces other than natural evolution. Guided evolution or selec-
tion in the laboratory is a potentially powerful tool for focused expansion 
of the sequence repertoire in any particular protein family57. After gen-
erating partially randomized large sequence sets, one can use a selection 
or screening method to identify sequences that are the result of strong 
functional constraints. Sequence-constraint experiments in the labora-
tory, coupled with massively parallel sequencing, have the promise of 
generating tens or hundreds of thousands of diverse sequences, permit-
ting a robust derivation of evolutionary couplings.

Combine experimental and computational structural biology
With the steep rise in the amount of sequence information, a rapid scan 
of the universe of protein folds at reasonable prediction accuracy appears 
to be within reach. Such a survey would provide insight into the diver-
sity of protein structures that have evolved to perform a wide range of 
specific molecular functions. Obtaining higher-accuracy structures will 
take more time, even if experimental structural genomics technology 
is further accelerated.

A particularly productive approach may be the combination of com-
putational and experimental methods (Fig. 5c). Protein-structure deter-
mination by NMR spectroscopy is ideally suited for a hybrid approach8, 
as it is based on the determination of distance constraints. Combining 
distance constraints derived from evolutionary couplings with those 
from NMR spectroscopy could reduce the amount of experimental 
effort needed to obtain a correct structure or facilitate the solution of 
larger structures than possible using NMR spectroscopy alone. A similar 
increase in overall efficiency could be obtained using X-ray crystallogra-
phy if a molecular replacement search of a predicted three-dimensional 
structure against just a native data set can be made to work. This would 
save the effort of obtaining additional derivative or anomalous diffrac-
tion data sets. Combining reduced X-ray and NMR spectroscopy data 
sets with predicted three-dimensional models may open a new phase for 
structural biology with much more rapid determination of high-accuracy 
protein structures (Fig. 5d).

Experimental and computational structural biology has made tremen-
dous progress since the first elucidation of the intricate details of pro-
tein three-dimensional structures and the first in vitro protein-folding 
experiments. We are now entering a phase in which the evolutionary 
information in the genetic sequences of the living system is being rapidly 
read using advanced sequencing technology. Using the resulting mas-
sive sequence data sets, successful decoding of the molecular record 
of evolutionary constraints could now reveal structural and functional 
information about proteins at an unprecedented rate.
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predictions of functional information for proteins (with either known or 
unknown three-dimensional structures) may be useful for multiple bio-
logical applications, including basic protein mechanism, interpretation 
of genotypic differences across the human population and evolution, 
somatic mutations in cancers, and the synthetic design of functionally 
altered proteins.

In one of our papers (D.S.M. and colleagues15) we illustrated the first 
principle by demonstrating that the predicted active sites of trypsin 
and Ras were particularly accurate relative to the accuracy of the rest 
of the protein when compared with the crystal structures, following 
the spirit of earlier work that used a weighted local mutual informa-
tion method50,51. Morcos et al.16 also showed that a long-distance high-
scoring pair of predicted contacts in a metallo-enzyme was more than  
14 Å apart in the monomer, so seemed as if the pair prediction was a false 
positive, but the residues are in principle in contact through a catalytic 
manganese ion in the respective monomer units of the dimer16.

The second principle of functional interpretation is illustrated in a 
subsequent paper (T.A.H. and colleagues22), where we systematically 
mapped the cumulative strength of all high-ranking evolutionary cou-
plings onto all residues to predict functional sites and functional chains 
over and above single-residue conservation. Mapping these highly 
evolutionary constrained residues onto two GPCRs, adrenergic beta-2 
receptor and an opioid receptor, highlights known ligand-binding resi-
dues (Fig. 4c) and the G-protein binding residues on the cytoplasmic 
interface (data not shown).

Alternative conformations and allostery. Many proteins can adopt 
different distinct conformations as part of their function. An interest-
ing example of covariation analysis of conformational changes is the 
derivation from computed evolutionary constraints of the alternative 
three-dimensional conformations in the large ‘major facilitator’ super-
family of transmembrane proteins22,52,53. In general, for some proteins 
with functional conformational flexibility, the record of functional con-
straints in multiple sequence alignments may be sufficiently strong to 
permit modeling not just of one structure, but of alternate structures, 
for example, of the end points of functional conformational transitions 
(Fig. 4d)22.

Limitations. Although evolutionary couplings show promise for the 
identification of functional sites, homomultimer contacts, alternative 
conformations and functional sites, many of the predicted contacts 
involved in these protein features may appear as false positives in the 
prediction of intradomain residue contacts. Therefore, a challenge for 
the field will be to develop algorithms that can disambiguate the dif-
ferent functional constraints. In addition, protein sequences that are 
confidently aligned will not necessarily have the same three-dimensional 
conformations, and methods should be developed to identify those pro-
tein families that are likely to be more varied in their three-dimensional 
structure. An objective measure has been described22 to choose the 
optimal alignment depth for accurate prediction of three-dimensional 
structure, but such measures will need to be developed further to be 
more rigorously applicable and yield better predictions.

The detection of evolutionary couplings between residues requires 
a substantially diverse set of sequences, which is not yet available for 
many families. For instance, to obtain a good fold, EVFold needs about 
5L (rough estimate) sequences in the multiple alignment, where L is the 
length of the protein. However, this shortcoming may be addressed sim-
ply over time, and more sophisticated use of family and subfamily infor-
mation54 may improve the accuracy of the algorithms. Given the massive 
throughput capacity of current sequencing technology, the growth 
of protein family information is primarily limited by the acquisition  
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