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1 Learning from regression

The following happens a lot in science. We vary system parameters x and make ob-
servations y. We perform a regression using some theoretical function f(x), which
describes how we expect y to vary with x. We then can have a pretty good idea what
we would measure, y∗ at some parameter x∗ that we didn’t actually measure. By
making a fewmeasurements, the regression helps us say things more generally, even
for parameter values we didn’t explicitly perform an experiment for.

1.1 An example: hydrolysis of cellulose

Togive a concrete example, let’s consider the the breakdownof α -1-methylglucopyranoside,
a key step in the hydrolysis of cellulose. This is featured in a nice paper byWolfenden
and Snider about the power of enzymes as catalysts. This example shows that glu-
coside hydrolysis is incredibly slow in the absence of enzymes.

The chemical rate constant is often well described by the Arrhenius relation,

k = Ae−Ea/kBT, (1.1)

where Ea is the activation energy that catalysts serve to decrease. For ease of nota-
tion, I will define units such that kB = 1, and will convert back to familiar units when
needed. So, we can write the Arrhenius rate law as

k = Ae−Ea/T. (1.2)

In an experiment, we can vary (and exactly measure) T, so there are two parameters,
A and Ea. We can find the values of A and Ea that best fit measured data, and the
result is shown in Fig. 1

Now, let’s look at some data. In Fig. 1, I show the measured chemical rate con-
stant versus temperature. For the best fit parameters, I got that A ≈ 950 s−1 and
Ea/kB a whopping 6000 K.This means that uncatalyzed oxidation is extremely slow.

Importantly, from the regression, we can predict what the chemical rate constant
will be at a temperature of 500K, even thoughwe did notmeasure it there. It is about
0.005s−1. By sampling a few temperatures, we now have some knowledge about the
rate constant over a whole range of temperatures.

This is a specific example, but if you want to think more generally, you can think
of data sets y as a function of x parametrized by parameters θ .

1.2 Learning from regression in the context of directed evolution

During the course of lots and lots of directed evolution experiments, we have varied
sequences and measured fitness of a protein through some screen. It would be great
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Figure 1: Observed rate constant versus temperature for uncatalyzed hydroly-
sis of α -1-methylglucopyranoside. Data digitized fromWolfenden and Snider,
Acc. Chem. Res., 34, 938–945, 2001. The best fit Arrhenius rate law is shown in
gray.

if we could perform a regression so that we could predict the fitness of an unobserved
sequence. That is our goal in this section of the course. For reasons we have dis-
cussed so far, it is almost impossible to do a parametric regression as we did for the
Arrhenius rate law in the example above. We instead need to resort to nonparam-
eteric approaches. These approaches do not assume a specific functional form of
f(x), but consider an infinite space of possible functions f(x). We will useGaussian
processes to do this. However, before proceeding to the nonparametric regression,
I will lay some of the theoretical groundwork by demonstrating how a parametric
regression is done. We start with Bayes’s Theorem.

2 Bayesian probability

Bayes’s Theorem may be familiar to you, but let’s write it down and think carefully
about what it means. We will not define what probability means, or how it is inter-
preted at the moment. For now, just think of probability as you might intuitively
think about it.1

Let P(A) be the probability of A and P(B) be the probability of B. Further, let
P(A,B) be the probability of bothA andB. Clearly,P(A,B) = P(B,A), since “and”
is commutative.

Now, we define P(A | B) as the probability of A given that B is true. We ofter say

1I know this sounds weird and totally not rigorous, but I ask you to suspect disbelief.
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this as “the probability ofA conditioned onB,” and refer toPA | B) as a conditional
probability. Now, it stands to reason that

P(A,B) = P(A | B)P(B). (2.1)

That is to say that the probability of A and B is given by the probability of B times
the probability of A, given that B is true.2 Now, because P(A,B) = P(B,A), we may
write

P(A,B) = P(A | B)P(B) = P(B,A) = P(B | A)P(A). (2.2)

Rearranging this equation, we arrive at Bayes’s Theorem.

P(A | B)P(B) = P(B | A)P(A)
P(B) . (2.3)

Bayes’s Theorem holds for any legitimate interpretation of probability.3 Two in-
terpretations of probability are most common.

2.1 Interpretations of probability

Frequentist probability. In the frequentist interpretation of probability, the prob-
ability P(A) represents a long-run frequency over a large number of identical repeti-
tions of an experiment. These repetitions can be, and often are, hypothetical. The
event A is restricted to propositions about random variables, a quantity that can very
meaningfully from experiment to experiment.4

Bayesian probability. Here, P(A) is interpreted to directly represent the degree
of belief, or plausibility, about A. So, A can be any logical proposition.

We will use the Bayesian interpretation here, and we will indeed apply the no-
tion of probability to logical propositions that are not random variables. Specifically,
we will consider probabilities of functions that describe how mutations in protein
sequences affect function.

2.2 Bayes’s Theorem as a model for learning

Let’s go back to our regression of using the Arrhenius relation. Recall that there
are two parameters, A and Ea. Prior to doing an experiment, we know some things

2In fact, equation (2.1) often serves to define conditional probability.
3We have not formally defined probability here, and will only talk about interpretation. You can

find a formal definition of probability, for example, on page 20 of Blitzstein and Hwangs excellent
Introduction to Probability.

4More formally, a random variable transforms the possible outcomes of an experiment to real
numbers.
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about these parameters. We know that A is positive, and further that it describes the
frequency of properly aligned molecular interactions. Beyond that, we do not know
much. So, we could say that before observing data, A could be prettymuch anything.
Similarly, wedonot knowmuch aboutwhatEa is either. It can be positive or negative,
and can take most values. We can codify our knowledge of these parameters using
probability distributions. Specifically, we might say

A ∼ Uniform(0,∞), (2.4)

Ea ∼ Uniform(−∞,∞). (2.5)

These are not proper probability distributions because the Uniform distribution is
not defined on an infinite domain, but they nonetheless summarize our knowledge
of these parameters before an experiment. Writing out the probabilities,

P(A,Ea) = constant. (2.6)

Now, let’s look at some data, show in Fig. 1 (ignore the regression line for a mo-
ment). How do we think these data were generated? We might assume that there is
going to be some error in the measurement of the rate constant, and that this error is
Gaussian distributed. In other words,

kmeasured(T) = Ae−Ea/T + ε , (2.7)

ε ∼ Normal(0, σ 2
n), (2.8)

where we have specified σ 2
n to be the variance describing error in measurement. If

we assume that σ 2
n is the same for all points, we say that we have homoscedastic

error. So, we have now also described how the data are generated. Writing out the
full expression, we have

P(k,T | A,Ea) =

(
1

2π σ 2
n

)n/2∏
i

exp

[
−
(
ki − Ae−Ea/Ti

)2

2σ 2
n

]
. (2.9)

Here, we have defined k and T as the observed data set, which we index over i. We
have also assumed each measurement is independent of all others. Equivalently, we
may write this as

ki,Ti | A,Ea ∼ Norm(Ae−Ea/Ti , σ 2
n). (2.10)

Ultimately, we want to learn about the parameters A and Ea after seeing the data,
so we want to know P(A,Ea | k,T). Here is where Bayes’s Theorem comes in!
Refering to equation (2.3), we take our logical conjectures A and B to be

A → A,Ea, (2.11)
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B → k,T. (2.12)

Then, we have

P(A,Ea | k,T) =
P(k,T | A,Ea)P(A,Ea)

P(k,T)
. (2.13)

In the generic example of a regression, this is

P(θ | y, x) =
P(y, x | θ )P(θ )

P(y, x)
. (2.14)

We have specified the two terms in the numerator. The denominator is already
determined by the fact that P(A,Ea | k,T)must be normalized.

P(k,T) =
∫

dA
∫

dEa P(k,T | A,Ea)P(A,Ea). (2.15)

So, we have fully specified what we are after. Bayes’s Theorem tells us how we
learned from the data. Prior to seeing the data, we didn’t know much about the
parameters, as was clear by P(A,Ea) being Uniform. After seeing the data, or a pos-
teriori, we have a new distribution describing our knowledge of the parameters. The
connection came through P(k,T | A,Ea), the likelihood of observing our data given
the parameters.

We can give the terms in Bayes Theorem convenient names.

posterior =
likelihood× prior

evidence
. (2.16)

The prior probability. In our case, this is P(A,Ea, σ n). This is what we knew
about the parameters prior to seeing the data. Notice how I have snuck σ n into the
prior. This is because σ n is a parameter, and it is also something we want to learn
about.

The likelihood. The likelihood, P(k,T | A,Ea, σ n), describes how likely it is to
acquire the observed data, given a set of parameters.

The marginal likelihood. This is the denominator, P(k,T, σ n). I will not talk
much about this here, except to say that it is a normalization constant for the poste-
rior. Note that it does not depend on the parameters, and is entirely determined from
the likelihood and prior, so we do not need to consider it explicitly in our modeling.
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The posterior probability. This is what we are after, P(A,Ea, σ n | k,T). This
codifies our knowledge of the parameters after seeing the data.

So, in summary, we learn about the parameters, moving from our prior knowl-
edge to our posterior knowledge via the likelihood.

2.3 The posterior predictive distribution

Let us now formalize how we can use the posterior distribution to predict what we
would expect from a new measurement of the rate constant, k∗ at some tempera-
ture we have not yet measured, T∗. We seek the posterior predictive distribution,
P(k∗ | T∗,k,T). This is what we would expect to measure, given that we have al-
ready observed some values of k. Generally, we if have a set of parameters θ and
a measured data set x, y, then the posterior predictive distribution is computed by
marginalizing over the posterior.5

P(y∗ | x∗, x, y) =
∫

dθ P(y∗ | x∗, θ )P(θ | x∗, x, y) (2.17)

=

∫
dθ P(y∗ | x∗, θ )P(θ | x, y).

The first term in the integral is the likelihood of observing y∗ for a set of parameters,
and the second term describes the probability distribution of those parameters, given
that we have measured some data. In this case of our present example,

P(k∗ | T∗,k,T) =
∫

dA
∫

dEa P(k∗ | T∗,A,Ea)P(A,Ea | kT). (2.18)

2.4 Summarizing the posterior

We often wish to summarize the posterior with a few compact numbers. One such
summary is the maximum a posteriori probability, or MAP, which is the value of
parameters that maximize the posterior. This is typically what you find when you do
a parametric regression, and is computing using optimization methods. I computed
this, and I got the results reported above. The result of the most probable curve for
the data is shown in Fig. 1.

5In the first line of equation (2.18), I have been explicit in including all terms for proper marginal-
ization, and in the second line noted that the posterior probability distribution of θ has no x∗ depen-
dence, so P(θ | x∗, x, y) = P(θ | x, y).
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2.5 Maximum likelihood estimation

In the case where A and Ea have Uniform priors, finding the MAP corresponds to
finding the values of A and Ea that maximize the likelihood. This correspondence
works whenever you have Uniform priors (the optimization of the maximum likeli-
hood may be bounded because of possible bounds on the Uniform priors, though).

If you think your prior only weakly affects the posterior, it is common practice
to directly do a maximum likelihood calculation as an approximation to the MAP.
Though we will do that here, and also when using Gaussian processes, I warn you
that doing this can lead to great peril. It means you are ignoring prior information.

3 Gaussian processes

When trying to predict protein fitness, we do not have the convenience of an Ar-
rhenius rate law to fit to the data. Having that function was convenient because we
know exactly what parameters we needed to describe with probability distributions.
We described A and Ea as Uniformly distributed, and we defined the likelihood to
be Gaussian, with a mean given by what would be predicted by the Arrhenius rate
law. But, alas, we have no such function for protein fitness as a function of sequence.
Actually, we will need to define a distance between sequences, and we will use a
sequence-structure distance, which we define later. Nonetheless, we have no func-
tion relating the sequence-structure distance to fitness.

3.1 Processes and nonparametric Bayes

Remember that Bayes’s Theorem applies to any logical conjecture. It even applies
to functions! So, imagine we have observed data X and y. I use a capital X here
to allow for multidimensional dependent variables. For example, we might want to
study both temperature and pHdependence of a rate constant. In this case, each row
of X is a pH, temperature pair. We define row i of X to be xi.

We expect that for each observation, yi = f(xi) + ε i, where ε i is some measure-
ment error and f(x) is an unknown function of x. We can still write Bayes’s Theorem.

P(f | y,X) =
P(y,X | f)P(f)

P(y,X)
. (3.1)

This may seem strange to write a probability of functions. We call a probability dis-
tribution over functions a process. So, the posterior, P(f | y,X), and the prior, P(f),
are processes.

Assuming for a moment we can compute the posterior, we then then again come
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up with a posterior predictive distribution,

P(f(x∗) | x∗, y,X) =

∫
df P(f(x∗) | x∗, f)P(f | X, y). (3.2)

This looks exactly the same as for parametric regression. Instead of writing a prob-
ability distribution over infinitely many parameter values in the parametric setting,
we are no writing a process over infinitely many functions. This posterior predictive
distribution is key for us. Wewant to be able to predict what a new protein fitness will
be for an unobserved sequence.

3.2 Gaussian processes with finite points

How can we treat a probability distribution over functions? We can instead define a
probability distribution over the function’s values at some arbitrary points. So, imag-
ine we measure a function at points X, with N total observations. We can define a
joint distribution, P(f(x1), . . . , f(xN)). This equivalently defines a process.

So far, we have said nothing about what the joint distribution is. We can choose
many distributions for this, but we might choose a joint Gaussian distribution. This
defines a Gaussian process, or GP. To define the joint distribution, then, we need
to define the two parameters of a multivariate Gaussian distribution, its mean and
covariance. The mean must be defined for an arbitrary point x, and the covariance
for an arbitrary pair of points x, x′. Thus, the mean function, m(x) and the covari-
ance function, k(x, x′), uniquely define a Gaussian process. We can write a Gaussian
process as

f(x) ∼ GP(m(x), k(x, x′)). (3.3)

Note that because in practice, we compute f(x∗), that is the functionwe are fitting
are a finite set of points x∗ we can write Bayes’s theorem again as

P(f(x∗) | x∗, y,X) =
P(y,X | f(x∗), x∗)P(f(x∗) | x∗)

P(y | X)
. (3.4)

Or, if we want to evaluate f at many points, X∗,

P(f(X∗) | X∗, y,X) =
P(y,X | f(X∗),X∗)P(f(X∗) | X∗)

P(y | X)
. (3.5)

So, the posterior distribution is a predictive distribution.

3.3 The mean function and centering and scaling

In a purely nonparametric approach, we almost always take the mean function to be
zero; m(x) = 0. We may, however, with to do a semi-parametric regression and
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introduce an explicit bias via m(x). This is interesting, but outside of our present
discussion. Henceforth, in this class, we will take m(x) = 0.

In general in machine learning applications, and many nonparametric contexts
in general, it is good practice to center and scale the observed data to improve per-
formance of your learning algorithms. I will not get into the details of this here6, but
rather will encourage you to center and scale your data before fitting a GP. Specif-
ically, if x̄ is the arithmetic mean of observations x, and sx is the sample standard
deviation of x, then you should apply a linear transformation of x to get a scaled ver-
sion.

xscaled =
x − x̄

sx
. (3.6)

You should then work with xscaled. You should do this to all x and y values. You
can then apply the inverse linear transformation to get back your original values after
fitting the GP.

x = sxxscaled + x̄. (3.7)

3.4 The kernel and covariance matrix

The covariance function, k(x, x′) is called a kernel. It must have certain properties.
Remember that it defined the entries of a covariance matrix of a multivariate Gaus-
sian distribution. Specifically, let’s say that X has n rows. Then, we can define an
n × n matrix, K(X,X′) that has entries

Kij = k(xi, x′
j). (3.8)

This matrix is called a covariancematrix, which is a special case of aGrammatrix.
Because this is a joint Gaussian distribution, the covariance matrix K(X,X′) must
be positive definite for any X, X′. This puts a restriction on what kernels that are
allowed. Some common kernels are shown below.

polynomial: k(x, x′) = (σ 2
0 + σ 2

p xTx′)d, d ∈ {1, 2, 3, . . .} (3.9)

squared exponential (SE): k(x, x′) = σ 2
f exp

[
−∥x − x′∥2

2
2ℓ2

]
(3.10)

Matérn: k(x, x′) =
21−ν β ν

Γ (ν ) Kν (β ) , where β =

(
2ν ∥x − x′∥2

2
ℓ2

) 1
2

(3.11)

6See the series of blog posts on preprocessing in data science by Hugo-Bowne Anderson for an
accessible discussion on why centering and scaling is important.
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Matérn (ν = 5): k(x, x′) =

1 +

(
5 ∥x − x′∥2

2
ℓ2

) 1
2

+
5 ∥x − x′∥2

2
3ℓ2



× exp

−(5 ∥x − x′∥2
2

ℓ2

) 1
2
 , (3.12)

where

∥x − x′∥2
2 = (x − x′)T(x − x′) (3.13)

is the 2-norm, and Kν is a modified Bessel function of the second kind. All of these
kernels are positive definite.

So, how do we interpret all of this? For ease of discussion, let’s talk specifically
about the SE kernel. If x and x′ are close to each other, the kernel returns a large
value. The value returned by the kernel falls off as x and x′ grow farther apart. So,
the covariance between x and x′ is large if they are close, and small if they are farther
apart. A large covariance means that f(x) and f(x′) should be close to one another,
and a small covariance means that they are unrelated.

Finally, we note that each of the kernels have parameters. In the case of the SE
kernel, there are two parameters, σ f and ℓ. So, in this sense, this “nonparametric”
model has some tunable parameters. Specifically, these parameters say something
about how the possible functions f(x) might behave. The covariance is modulated
by ℓ. If ℓ is large, then x and x′ do not have to be so close together to influence each
other. This means that the function is not so rapidly varying. So, ℓ sets a length scale
overwhich the function f(x) varies. Similarly, σ f sets the amplitude of the variations.
The larger σ f is, the more f(x) will vary in the vertical direction. The parameters of
the kernel are often called hyperparameters.

In summary, the kernel specifies key features of the functions we are using to
describe our data. It sets lengths scales for typical variation in the horizontal and
vertical directions.

3.5 The prior

We can visualize the effects of the parameters by sampling out of the prior distribu-
tion. Remember that we can represent the prior P(f | σ f, ℓ) as a multivariate Gaus-
sian distribution over a set of finite points. For ease, let’s consider a one-dimensional
dependent variable, so x = x. Saw we want to evaluate f(x) at a set of positions x∗.
Then,

f(x∗) | σ f, ℓ ∼ Norm(0,K(x∗, x∗)). (3.14)
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To sample out of this distribution, we compute the matrix K(x∗, x∗) for given values
of σ f and ℓ, and then we sample out of this distribution, e.g., using
np.random.multivariate_normal(). In Fig. 2, I show samples out of a prior
with a SE kernel with σ f = 1 and various values of ℓ. I have plotted the results as
dots to emphasize that we are evaluating f(x∗) at a finite set of points. We see that as
ℓ grows, the undulations decrease in frequency.

Figure 2: Priors for a SE kernel with σ f = 1 and various values of ℓ.

We can draw many many functions this way. The result is shown in Fig. 3. The
function mostly lies between−2 and 2, which should contain about 95% of the func-
tion values since σ f = 1. As you can see, prior to obtaining data, the function we are
after can be anything varying on a length scale of order one unit with an amplitude
of order one unit.

3.6 The likelihood

We expect our observation y to follow y = f(x), perhaps with some error. We can
model that error to be Normally distributed with homoscedastic error σ n, i.e.,

yi ∼ Norm(f(xi), σ n) ∀i. (3.15)

This choice of likelihood has the important consequence that it is the conjugate like-
lihood to a Gaussian process prior. This means that the posterior distribution of f(x)
is also a Gaussian process. I.e.,

f(x) | y,X ∼ GP(m(x), k(x, x′ + δ x,x′ σ n)). (3.16)

Here, I show the posterior explicitly, which can be calculated analytically for the
Gaussian likelihood and GP prior. The posterior has the same mean function as the

11



Figure 3: A plot of 500 functions drawn from a GP prior using a SE kernel with
σ f = ℓ = 1.

prior, and the kernel is adjusted by adding σ n whenever x = x′, as denoted with

δ x,x′ =

{
1 x = x′

0 x ̸= x′.
(3.17)

So, for many observations X with a zero mean function, we define

Ky ≡ K(X,X) + σ 2
nI, (3.18)

where I is the identity matrix. Then, we have

f(x) ∼ Norm(0,Ky). (3.19)

3.7 The posterior predictive distribution

We can find the posterior predictive distribution be integrating the posterior, but,
there is clever way to get to the distribution directly using properties of multivariate
Gaussian distributions.

We can specify a joint distribution of the posterior of the observed points, f(X)
and the desired set of function evaluations, f(X∗). We can do this because we know
the posterior is a Gaussian process. The joint distribution is again a multivariate
Gaussian. For notational convenience, we will define f = f(X) to be the function
evaluated at measured X, and f∗ = f(X∗) to be the function evaluated at unmeasured
X∗ (

f
f∗

)
∼ Norm

(
0,

(
Ky K∗

KT
∗ K∗∗

))
. (3.20)
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For further notational simplicity, we have also defined

K∗ = K(X,X∗) (3.21)

K∗∗ = K(X∗,X∗). (3.22)

It is a property of Gaussian matrices (which may be derived with lots of grunge)
that we can get the conditional distribution from the joint distribution. The condi-
tional distribution is exactly the posterior predictive distribution. Using this result,
we have

f∗ | X∗,X, y ∼ Norm(m∗, Σ ∗), (3.23)

where

m∗ = KT
∗K−1

y y, (3.24)

Σ ∗ = K∗∗ − KT
∗ K−1

y K∗. (3.25)

The vector m∗ gives the mean (and therefore most probable, since we are dealing
with Gaussian distributions) value of f(X∗). The diagonal entries of Σ ∗ give the
variance, and therefore the uncertainty, in f(X∗). Computing m∗ and Σ ∗ (or at least
its diagonal entries) is called fitting the Gaussian process. And we now have our
predictions!

3.8 Computing the fit

Setting aside the calculation of the posterior covariance matrix Σ ∗ for the moment,
we will focus on the calculation of m∗. At the center of fitting a Gaussian process is
inverting the matrix Ky. More specifically, we need to compute K−1

y y, which is the
solution α to

Ky α = y. (3.26)

Because Ky is symmetric and positive definite by construction, it has aCholesky
decomposition, L, such that

Ky = LLT. (3.27)

The matrix L is lower triangular. Importantly, it can be stably computed in order n3

operations (for an n × n Ky). Thus,

LLT α = y. (3.28)

13



Let z = LT α . Then we can solve for z by solving

Lz = y. (3.29)

This is a triangular system and is easily solved. Given z, we then solve for α by
solving another triangular system

LT α = z. (3.30)

So, we never directly invert the Ky matrix. Given that we can compute α , we then
directly compute m∗ = KT

∗ α .

In practice, we rarely compute the off-diagonal entries of Σ , and only compute
the diagonal elements. The diagonal elements give the uncertainty in each predicted
f(x∗). To compute the variance in a single f(x∗), we define

k∗ = (k(x1, x∗), k(x2, x∗), . . . , k(xn, x∗), )
T (3.31)

to be an array of covariances between x∗ and all of the points x where measurements
were made. Then, the variance is

σ 2
∗ = k(x∗, x∗)− kT

∗ K−1
y k∗. (3.32)

We can use the Cholesky decomposition of Ky to compute this as well.

4 Hyperparameters

I have just described how to fit a Gaussian process in order to make predictions. No-
tice, though, that we did this for a specific set of values of the hypoerparameters. In
the case of the SE kernel, those hyperparameters are σ f and ℓ, with the homoscedas-
tic error σ n also being a hyperparameter.

We might choose σ f = ℓ = σ n = 1 in for a centered and scaled fit. This
makes sense because centering and scaling aims to bring the variation in the data
toward unity. Let’s do this for the kinetic data. The result is shown in Fig. 4. As is
traditionally done, the mean curve of f(X∗) is shown as a line, and the shaded region
shows plot and minus 1.96 standard deviations to give a 95% credible region.

This fit does not quite hold muster. It tends to dampen out the variation in the
data in favor of a flatter curve. Furthermore, the credible region seems unreasonably
wide for these data. Maybe this was not the best choice of hyperparameters.

4.1 Hyperparameters in the posterior calculation

To think about how to deal with this, let’s go back to Bayes’s theorem, equation
(3.5), but this time explicitly include the hyperparameters from the SE kernel and
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Figure 4: Fit of a Gaussian process to the rate constant data. The hyperparam-
eters for the fit are σ f = ℓ = σ n = 1.

homoscedastic error, which we should have been doing in the first place (but I inten-
tionally didn’t so as not to clutter the presentation).

P(f∗, σ n, σ f, ℓ | X∗, y,X) =
P(y, | X, f∗, σ n, σ f, ℓ,X∗)P(f∗, σ n, σ f, ℓ | X,X∗)

P(y | X,X∗)

=
P(y | X, σ n, σ f, ℓ)P(f∗, σ n, σ f, ℓ | X∗)

P(y | X)
. (4.1)

In the second line, I have removed variables that are not directly conditioning to
reduce clutter. Note that we have explicitly denoted that σ n, σ f, and ℓ are unknown.
We have also noted that the likelihood does not explicitly depend on them. We can
rewrite the prior by converting it from a joint distribution to a conditional one.

P(f∗, σ n, σ f, ℓ | X∗) = P(f∗ | σ n, σ f, ℓ,X∗)P(σ n, σ f, ℓ | X∗)

= P(f∗ | σ n, σ f, ℓ,X∗)P(σ n, σ f, ℓ). (4.2)

Thus, we have

P(f∗, σ n, σ f, ℓ | X∗, y,X) =
P(y | X, σ n, σ f, ℓ)P(f∗ | σ n, σ f, ℓ,X∗)P(σ n, σ f, ℓ)

P(y | X)
.

(4.3)

We see that this defined a hierarchical model; hence the name hyperparameters.

Tomost rigorously obtain our estimates for f∗, specifically its posterior, wewould
also need to include σ n, σ f, and ℓ in the full Bayesian treatment. This means also
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specifying their priors, which would require some thought. We can thenmarginalize
out the hyperpriors to get our desired probability distribution, specifically

P(f∗ | X∗, y,X) =

∫
dσ n

∫
dσ f

∫
dℓP(f∗, σ n, σ f, ℓ | X∗, y,X). (4.4)

This can be achieved with Markov chain Monte Carlo. This is unfortunately com-
putationally intensive, and we might seek a more tractable means.

4.2 Choosing a single optimal set of hyperparameters

A more computationally tractable approach is to attempt to choose a single optimal
set of hyperparameters. The technique we lay out here is widely used, and is used in
the papers we will read about Gaussian processes being used to predict protein fit-
ness based on a sequence-structure metric. But, I warn you, this approach is fraught
with danger. You can pathologically overfit your data, among other problems. A
full Bayesian treatment usingMCMC is often preferred. For excellent discussion on
this, see this series of blog posts fromMike Betancourt. Nonetheless, we proceed.

Our strategy is to find the hyperparameters that maximize the likelihood P(y |
X, f, σ n, σ f, ℓ), in effect doing a maximum likelihood estimation of them. We will
not directly maximize the likelihood, but rather will marginalize out the effect of the
Gaussian process,

P(y | X, σ n, σ f, ℓ) =

∫
df P(y | X, f, σ n, σ f, ℓ)P(f | X, σ n, σ f, ℓ), (4.5)

which gives themarginal likelihood. I will not derive it here, but we can show that

ln P(y | X, σ n, σ f, ℓ) = −1
2

yTK−1
y y − 1

2
ln |Ky| −

n
2

ln(2π). (4.6)

Maximizing the log of the marginal likelihood is the same as optimizing the marginal
likelihood, so we can find the values of σ n, σ f, and ℓ that maximize the above func-
tion.

In looking at the two terms (the last one is a constant and immaterial), the first
describes how well the GP fits the data and the second describes model complexity
(related to anOccam factor). This second term is important formitigating overfitting
(but does not always do the job).

Performing the optimization amounts towriting a function to compute thematrix
Ky as a function fo the hyperparameters (and the measured X), and then using this,
along with the measured data y, to compute the log marginal likelihood. You can
then use optimization algorithms, such as BGFS, to find the maximum.

I did this for the rate constant data, and then used these optimal hyperparameters
to fit the GP. I got the result in Fig. 5. This fit passes “the eye test” and we may feel
comfortable using it for predictions.
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Figure 5: Fit of a Gaussian process to the rate constant data. The hyperparame-
ters for the fit were found usingmaximummarginal likelihood to be σ n = 0.13,
ℓ = 2.54, and σ f = 2.39.

5 Using GPs to learn protein fitness

In order to apply this methodology to protein fitness, we need to devise a scheme for
determining the distance between two proteins, which is x in all of the analysis above.
We can start by defining a sequence distance using one-hot encoding. That is, we set
up a binary feature vector that has 20N entries, where N is the length of the protein.
Entry 20i + j is one if amino acid j is present at residue i and zero otherwise, where
we are using zero indexing. Let xse be this sequence vector. The distance between
two sequences is then ∥xse − x′

se∥2 =
√

(xse − x′
se)

T(xse − x′
se).

We can similarly use one-hot encoding to code for structure similarity. Say that
the structure of the parent has Nc contacts, where a contact is defined with the usual
4.5 Åmetric we have been using. We then construct an array xst with Nc entries, each
of which is one for a specific indexed intact contact and zero for a broken contact.

We can then concatenate these two arrays to get our distance measure, x =
x⌢

se xst. Note that we could chose to weight entries in either the sequence of struc-
ture vector depending on additional knowledge about the protein, but binary feature
vectors are easiest to construct and use.

6 Machine learning ̸= human learning

You now have the pieces you need to encode and fit a Gaussian process for protein
fitness. This is can lead to more effective strategies for chimera construction, as
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demonstrated in the Bedbrook, Yang, et al. paper. However, it is important to note
thatmachine learning is not the same as human learning. To understandwhat Imean
here, consider the example of fitting a GP regression to the kinetic data we have
performed in these notes. TheGP regression is nonparametric; there is no theoretical
model behind it. It is limited in its predictive power to regions near where data were
collected. This means that it is not general; it is limited entirely by what data are
collected. While the machine has learned, the human has learned little about the
mechanisms behind temperature-dependence of chemical rate constants.

Yes, the Arrhenius rate law is phenomenological, but it does have some connec-
tion to statistical physics in its similarity to the Eyring equation. Importantly, it has
a closed form expression with easy-to-understand components. It can be used to
predict reaction rate constants at temperatures beyond those sampled (though there
may be some temperature effects on the activation energy and frequency factor).
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