
Review Article
https://doi.org/10.1038/s41592-019-0496-6

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA. *e-mail: fha@cheme.caltech.edu

Protein engineering seeks to design or discover proteins with
properties useful for technological, scientific, or medical appli-
cations. Properties related to a protein’s function, such as its

expression level and catalytic activity, are determined by its amino
acid sequence. Protein engineering inverts this relationship in order
to find a sequence that performs a specified function. However, cur-
rent biophysical prediction methods cannot distinguish the func-
tional levels of closely related proteins1,2. Furthermore, the space of
possible proteins is too large to search exhaustively naturally, in the
laboratory, or computationally3. The problem of finding optimal
sequences is NP-hard: there is no known polynomial-time method
for searching this space4. Functional proteins are scarce in this vast
space of sequences, and as the desired level of function increases,
the number of sequences having that function decreases exponen-
tially5,6. As a result, functional sequences are rare and overwhelmed
by nonfunctional and mediocre sequences.

Directed evolution has been successful because it sidesteps sci-
entists’ inability to map protein sequence to function. Inspired by
natural evolution, directed evolution leads to an accumulation of
beneficial mutations via an iterative protocol of mutation and selec-
tion. The approach entails sequence diversification to generate
a library of modified sequences followed by screening to identify
variants with improved properties, with further rounds of diversifi-
cation until fitness goals are achieved (Fig. 1a). Directed evolution
finds local optima through repeated local searches, taking advan-
tage of functional promiscuity and the clustering of functional
sequences in sequence space5,7 (Fig. 1b).

Directed evolution is limited by the fact that even the most high-
throughput screening or selection methods sample only a fraction
of the sequences that can be made by most diversification meth-
ods, and the development of efficient screens is nontrivial. There
are an enormous number of ways to mutate any given protein: for a
300-amino-acid protein, there are 5,700 possible single-amino-acid
substitutions and 32,381,700 ways to make just two substitutions with
the 20 canonical amino acids. Exhaustive screening to find rare ben-
eficial mutations is expensive and time-consuming, and sometimes
impossible. Moreover, directed evolution requires at least one mini-
mally functional parent and a locally smooth sequence–function

landscape8. Recombination methods may allow for bigger jumps
in sequence space while retaining function9, but these methods are
restricted to combinations of previously explored mutations.

Whereas directed evolution discards information from unim-
proved sequences, machine-learning methods can use this informa-
tion to expedite evolution and expand the number of properties that
can be optimized by intelligently selecting new variants to screen,
thereby reaching higher fitness levels than are possible through
directed evolution alone10–14 (Fig. 1c). Machine-learning methods
learn functional relationships from data15,16—the only added costs
compared with those of directed evolution are in computation
and DNA sequencing, the costs of which are decreasing rapidly.
Machine-learning models can be predictive even when the underly-
ing biophysical mechanisms are not well understood. Furthermore,
machine-learning-guided directed evolution is able to escape
local optima by learning efficiently about the entire function
landscape (Fig. 1d).

Machine learning is not necessarily useful for all protein-
engineering applications. Although machine learning will never
reduce the expected improvement per iteration, the added costs of
sequencing every variant screened and synthesizing desired variants
may increase the experimental burden. In cases where the screen is
expensive or slow enough to outweigh the cost and time of sequenc-
ing and synthesis, machine learning is beneficial. Alternatively, if
the library design necessitates gene synthesis (instead of mutagen-
esis to generate variation), then machine learning should be used
to choose which sequences to synthesize. However, it is impossible
to predict a priori how much machine learning will speed up an
optimization. The decision to use machine learning should consider
prior knowledge about the system (the difficulty of the screen, the
smoothness of the fitness landscape, etc.).

Once the decision has been made to use machine learning, there
are two key steps: (i) building a sequence–function model and
(ii) using that model to choose sequences to screen. We provide
practical guidance for these steps, as well as two case studies that
illustrate the machine-learning-guided directed evolution pro-
cess. Finally, we consider developments that would allow wider
application of machine learning for protein engineering.

Machine-learning-guided directed evolution for
protein engineering
Kevin K. Yang, Zachary Wu and Frances H. Arnold*

Protein engineering through machine-learning-guided directed evolution enables the optimization of protein functions.
Machine-learning approaches predict how sequence maps to function in a data-driven manner without requiring a detailed
model of the underlying physics or biological pathways. Such methods accelerate directed evolution by learning from the prop-
erties of characterized variants and using that information to select sequences that are likely to exhibit improved properties.
Here we introduce the steps required to build machine-learning sequence–function models and to use those models to guide
engineering, making recommendations at each stage. This review covers basic concepts relevant to the use of machine learn-
ing for protein engineering, as well as the current literature and applications of this engineering paradigm. We illustrate the
process with two case studies. Finally, we look to future opportunities for machine learning to enable the discovery of unknown
protein functions and uncover the relationship between protein sequence and function.

Nature Methods | VOL 16 | AUGUST 2019 | 687–694 | www.nature.com/naturemethods 687

mailto:fha@cheme.caltech.edu
http://www.nature.com/naturemethods

Review Article NaTure MeTHodS

Building a machine-learning sequence–function model
Machine-learning models learn from examples of protein sequences
and the respective functional measurements of the proteins. The
examples chosen for building the model determine what the model
can learn. The initial set of variants to screen can be selected at ran-
dom from a library10 or to maximize information about the muta-
tions considered11–13,17–19. The selection of variants at random is
usually the simplest method; however, for low-throughput screens,
it can be important to maximize information obtained from high-
cost experiments, as this will maximize model accuracy on unseen
sequences. Maximizing information about the remainder of the
library is roughly equivalent to maximizing diversity in the training
sequences. After collecting the initial training data, the user must
decide what type of machine-learning model to use, represent the
data in a form amenable to the model, and train the model.

Choosing a model
A wide range of machine-learning algorithms exist, and no single
algorithm is optimal across all tasks20. For machine-learning-guided
directed evolution, we are most interested in methods that take
sequences and their associated output values and learn to predict
the outputs of unseen sequences.

The simplest machine-learning models apply a linear transfor-
mation to the input features, such as the amino acid at each posi-
tion, the presence or absence of a mutation10, or blocks of sequence
in a library of chimeric proteins made by recombination21. Linear
models are commonly used as baseline predictors before more pow-
erful models are tried.

Classification and regression trees22 use a decision tree to go
from input features (represented as branches) to labels (represented

as leaves). Decision-tree models are often used in ensemble meth-
ods, such as random forests23 and boosted trees24, which combine
multiple models into a more accurate meta-predictor. For small
biological datasets (<104 training examples), including those often
encountered in protein-engineering experiments, random forests
are a strong and computationally efficient baseline and have been
used to predict enzyme thermostability25–27.

Kernel methods, such as support vector machines28 and kernel
ridge regression29, use a kernel function, which calculates similari-
ties between pairs of inputs, to implicitly project the input features
into a high-dimensional feature space without explicitly calculat-
ing the coordinates in this new space. While general-purpose
kernels can be applied to protein inputs, there are also kernels
designed for use on proteins, including spectrum and mismatch
string kernels30,31, which count the number of shared subsequences
between two proteins, and weighted decomposition kernels32, which
account for three-dimensional protein structure. Support vector
machines have been used to predict protein thermostability25–27,33–37,
enzyme enantioselectivity38, and membrane protein expression
and localization39.

Gaussian process (GP) models combine kernel methods
with Bayesian learning to produce probabilistic predictions40.
These models capture uncertainty, providing principled ways to
guide experimental design. The run time for exact GP regres-
sion scales as the cube of the number of training examples, which
makes it unsuitable for large (>103) datasets, but there are now
fast and accurate approximations41,42. GPs have been used to pre-
dict thermostability11,32,43, substrates for enzymatic reactions44,
fluorescence45, membrane localization12, and channelrhodopsin
photoproperties13.

a

Parent

New parent

Screen

Variant pool

Mutagenesis

b

d

Sequence–function model

Parent Screen

Variant pool

Mutagenesis

c

ML-guided selection

Unimproved variants

Sequence–function pairs

Fig. 1 | Directed evolution with and without machine learning. a, Directed evolution uses iterative cycles of diversity generation and screening to find
improved variants. Information from unimproved variants is discarded. b, Directed evolution is a series of local searches on the function landscape.
c, Machine-learning (ML) methods use the data collected in each round of directed evolution to choose which mutations to test in the next round.
Careful choice of mutations to test decreases the screening burden and improves outcomes. d, Machine-learning-guided directed evolution often
rationally chooses the initial points (green circles) to maximize the information learned from the function landscape, thereby allowing future iterations
to quickly converge to improved sequences (violet stars).

Nature Methods | VOL 16 | AUGUST 2019 | 687–694 | www.nature.com/naturemethods688

http://www.nature.com/naturemethods

Review ArticleNaTure MeTHodS

Deep-learning models, also known as neural networks, stack
multiple linear layers connected by nonlinear activation func-
tions, which allows them to extract high-level features from struc-
tured inputs. Neural networks are well suited for tasks with large
labeled datasets. They have been applied to protein–nucleic acid
binding46–48, protein–major histocompatibility complex binding49,
binding-site prediction50, protein–ligand binding51,52, solubility53,
thermostability54,55, subcellular localization56, secondary structure57,
functional class58–60, and even three-dimensional structure61.

Figure 2 shows a general heuristic for choosing an algorithm for
modeling protein sequence–function relationships. If estimates of
model uncertainty are required, GPs are the simplest off-the-shelf
solutions. Otherwise, linear models provide a simple, interpretable
baseline. If a linear model is insufficiently accurate, random forests,
boosted trees, or support vector machines are efficient for datasets
with fewer than 10,000 examples, whereas neural networks gener-
ally provide the best performance on larger datasets.

Model training and evaluation
Training a machine-learning model refers to tuning its parameters
to maximize its predictive accuracy. The primary goal of training
is to accurately predict labels for inputs not seen during training.
Therefore, during model training, performance should be estimated
on data not in the training set. It is thus essential to withhold approx-
imately 20% of the data, called the test set, for model evaluation.

In addition to parameters, all model families have hyperparam-
eters that determine the form of the model. In fact, the model fam-
ily is itself a hyperparameter. Unlike parameters, hyperparameters
cannot be learned directly from the data. They may be set manu-
ally by the practitioner or determined via a procedure such as grid
search, random search, or Bayesian optimization62. For example, the
hyperparameters for a neural network include the number, size, and
connectivity of each layer. The vectorization method is also a hyper-
parameter. Even modest changes in the values of hyperparameters
can considerably affect accuracy, and the selection of optimal values
is often computationally intensive, as each set of hyperparameters
requires training of a new model.

For model comparison and the selection of hyperparameters, the
data that remain after removal of the test set should be further split
into a training set and a validation set. The training set is used to
learn parameters, and the validation set is used to choose hyperpa-
rameters by providing an estimate of the test error. If the training set
is small, cross-validation may be used instead of a constant valida-
tion set. In n-fold cross-validation, the training set is partitioned
into n complementary subsets. Each subset is then predicted using
a model trained on the other subsets. The average accuracy across
the withheld subsets provides an estimate of test accuracy. Cross-
validation provides a better estimate of the test error than the use of
a constant validation set, but it requires more training time.

The datasets should be split into training, validation, and test sets
to allow an accurate estimate of the model’s performance under the
conditions in which it will be used. For datasets from mutagenesis
studies, which tend to be small and accumulative, the best practice
is to train on variants characterized in earlier rounds of mutagenesis
and to evaluate model performance on later rounds (to recapitulate
the iterative engineering process). When dealing with large, diverse
datasets, the best practice is to ensure that all examples in the vali-
dation and test sets are some minimum distance away from all the
training examples to test the model’s ability to generalize to unre-
lated sequences.

Vector representations of proteins
Machine-learning models act on vectors of numbers, not directly on
protein sequences. How each protein sequence is vectorized deter-
mines what can be learned63,64. A protein sequence is a string of
length L in which each residue is sampled from an alphabet of size
A. The simplest way to encode such a string is to represent each of
the A amino acids as a number. However, this enforces an ordering
on the amino acids that has no physical or biological basis. Instead
of representing each position as a single number, a one-hot encod-
ing represents each of the L positions as a series of A − 1 zeros and
one 1, with the position of the 1 denoting the identity of the amino
acid at that position. Given structural information, the identity of
pairs of amino acids within a certain distance in the structure can

Linear regression

Need uncertainty?

Yes

No

Gaussian process

Yes

Yes

Neural network

...

>10,000 samples?

Accurate enough?

Random forest or boosted trees

φ

Support vector machine

No

or

No

Fig. 2 | A general heuristic for choosing a machine-learning sequence–function model for proteins.

Nature Methods | VOL 16 | AUGUST 2019 | 687–694 | www.nature.com/naturemethods 689

http://www.nature.com/naturemethods

Review Article NaTure MeTHodS

also be one-hot encoded11,12. One-hot encodings are inherently
sparse, memory inefficient, and high-dimensional, and presup-
pose no notion of similarity between sequence or structural ele-
ments. Nevertheless, one-hot encodings can be considered a good
baseline encoding.

Proteins can also be encoded on the basis of physical properties.
For example, each amino acid can be represented by its charge,
volume, or hydrophobicity, and each protein can be represented
by a combination of these properties. Higher-level properties, such
as predicted secondary structure, can also be used. AAIndex65 and
ProFET66 have large collections of physical descriptors for protein
sequences. There have also been attempts to reduce each amino
acid to two dimensions on the basis of volume and hydrophobic-
ity67 or to combine physical properties with structural informa-
tion36,68 by encoding each position as a combination of the amino
acids in its geometric neighborhood. However, the molecular
properties that dictate each functional property are typically
unknown a priori.

While many protein sequences have been deposited in databases,
most are unlabeled. These unlabeled sequences contain information
about the distribution of amino acids selected by evolution to com-
pose proteins, which may be helpful across prediction tasks. The
simplest encodings incorporating evolutionary information are
BLOSUM69 and AAIndex2-style substitution matrices based on rel-
ative amino acid frequencies. However, more sophisticated continu-
ous vector encodings of sequences can be learned from patterns in
unlabeled sequences52,70–76 or from structural information77. These
representations learn to place similar sequences together in the con-
tinuous space of proteins. Learned encodings are low-dimensional
and may improve performance by transferring information in
unlabeled sequences to specific prediction tasks. However, it is
difficult to predict which learned encoding will perform well for
any given task.

Just as no model will be optimal for all tasks, there is no uni-
versally optimal vectorization method20. Researchers must use a
combination of domain expertise and heuristics to select a set of
encodings for comparison. For small datasets, one-hot encodings
offer superior performance to general sets of protein properties73,
although careful feature selection informed by domain knowledge
may yield more accurate predictions. If accuracy is insufficient,
learned encodings may be able to improve performance74,75. The
encoding should ultimately be chosen empirically to maximize pre-
dictive performance.

Using sequence–function predictions to guide exploration
Once a sequence–function model has been trained, the next set of
sequences to be screened can be chosen via the collection of ben-
eficial mutations or direct optimization over sequences. For the
former, linear models of the mutational effects can be learned and
directly interpreted in order to classify mutations as beneficial,
neutral, or deleterious. Mutations can then be fixed, eliminated, or
reconsidered in future rounds of optimization10. Alternatively, the
model can be used to select combinations of mutations with a high
probability of improving function14,45,78.

Optimization can also be carried out directly over sequences.
This can be as simple as enumerating all the sequences considered,
predicting their function, and synthesizing the best predicted vari-
ants. However, if multiple rounds of optimization are to be per-
formed and the sequence–function model provides probabilistic
predictions, Bayesian optimization provides a way to balance the use
of the information learned and the exploration of unseen regions of
sequence space62. Probabilistic predictions provide a well-calibrated
measure of uncertainty: the model knows what it does not know.
For example, the GP upper confidence bound (GP-UCB) algorithm
balances exploration and exploitation by selecting variants that
maximize a weighted sum of the predictive mean and s.d.79 (Fig. 3).
Alternatively, the model and data can be fully exploited with the
GP lower-confidence-bound algorithm, which selects variants that
maximize the weighted difference between the predictive mean and
s.d. These approaches have been combined with structure-guided
recombination to optimize cytochrome P450 thermostability11,
channelrhodopsin localization to mammalian cell membranes12,
and channelrhodopsin light-activated conductance13. With no
high-throughput screen for channelrhodopsin properties, it would
not have been possible to optimize conductance by traditional
directed evolution.

Case study 1: using partial least-squares regression to
maximize enzyme productivity
An early large-scale evolution campaign guided by machine learn-
ing improved the volumetric productivity of a halohydrin dehaloge-
nase in a cyanation reaction by roughly 4,000-fold10. In each round
of evolution, 10–30 mutations of interest were identified through
traditional directed evolution methods (Fig. 4). These mutations
were then randomly recombined, and from the resulting pool, a
number of variants (three times the number of positions mutated)
were sequenced and represented as one-hot vectors to train a partial

Observed

True function

Selected

GP posterior

x x

y

Fig. 3 | GP-UCB algorithm. At each iteration, the next point to be sampled is chosen on the basis of the maximized weighted sum of the posterior mean
and s.d. This balances exploration and exploitation by exploring points that are uncertain and have a high posterior mean. The right-hand panel shows the
posterior mean and s.d. after observation of the selected point (green) in the left-hand panel.

Nature Methods | VOL 16 | AUGUST 2019 | 687–694 | www.nature.com/naturemethods690

http://www.nature.com/naturemethods

Review ArticleNaTure MeTHodS

least-squares (PLS) regression model80. The PLS algorithm projects
both sequences and fitnesses to a space with reduced dimensions
to fit the linear model. Thus, PLS is able to fit data for which the
number of variables exceeds the number of observations and poten-
tially avoid indirect correlations in the model81. The resulting linear
model can be expressed as

∑=
=

y c x
m

q

m m
1

where cm is the additive contribution of each mutation to fitness,
and xm indicates the presence (xm = 1) or absence (xm = 0) of the
mutation. Mutations were classified as beneficial, deleterious, or
neutral on the basis of their PLS coefficients to determine whether
each was retained, discarded, or retested. However, when the mod-
el’s accuracy was low, the authors were more biased toward retesting
mutations in future rounds. Finally, the best variant identified in the
library with randomly recombined mutations was fixed as the start-
ing sequence for the next round.

This case study was one of the first protein-engineering cam-
paigns guided by machine learning. In it, 519,045 variants were
tested, of which 268,624 were used to identify mutations to model
with PLS and 250,421 were chosen using PLS. In 18 rounds of
optimization, none of the rounds achieved more than a threefold
improvement. Machine learning sped up optimization by finding
beneficial mutations that would otherwise have been obscured by
their co-occurrence with deleterious mutations. However, optimi-
zation could have been accelerated by tests of different vectoriza-
tion methods and machine-learning algorithms to improve model
accuracy. The final linear model assumed that local regions of
the sequence–function landscape display predominantly additive
effects. For fitness landscapes where this is not the case, an alterna-
tive model should be used. Nevertheless, this work, which followed
an in silico demonstration of the approach on a theoretical fitness
landscape81, remains a landmark effort in the application of statisti-
cal modeling to protein engineering.

Case study 2: using Bayesian optimization to maximize the
thermostability of cytochrome P450
Machine learning is particularly suitable when it is expensive or dif-
ficult to screen for the property of interest. Romero et al. increased
the thermostability of cytochrome P450s, as measured by T50 (the

temperature at which an enzyme loses half its activity after a 10-min
incubation), by recombining sequence fragments from the heme
domains of the bacterial cytochrome P450 proteins CYP102A1,
CYP102A2, and CYP102A311 (Fig. 5). The sequence fragments were
chosen to minimize the number of contacts broken, where contacts
are amino acids within 4.5 Å of each other. Machine learning pro-
vides a benefit in such a situation because the chimeric genes must
be made via direct synthesis of the DNA sequence for each con-
struct, and the T50 measurement requires multiple incubations and
measurements for each variant and is relatively low throughput.

Romero et al. trained initial GP models for T50 and the presence
or absence of function on 242 chimeric P450s, and then evaluated
model performance on a test set of chimeric P450s generated with
different boundaries between sequence fragments. The GP model
used a one-hot representation of the protein’s three-dimensional
structure, which was more predictive than a one-hot representation
of the primary sequence. GP models are a good fit for this prob-
lem setting in which only a small amount of data is available. These
models also provide probabilistic predictions, which can be used to
guide data-efficient exploration and optimization.

After validating the accuracy of their models, Romero et al.
selected a small set of additional sequences to augment their mod-
els’ knowledge of the recombination landscape. In general, one
does this by selecting the sequences that most reduce uncertainty
in the predictions, as measured by the mutual information between
the measured sequences and the remaining sequences. Typically,
these sequences will be very diverse. However, because many vari-
ants are nonfunctional and therefore provide no information about
T50, Romero et al. used their classification model to select 30 addi-
tional sequences by maximizing the expected mutual information11.
Informally, these 30 sequences combined a high probability of being
functional with high sequence diversity, and 26 of these sequences
were functional despite being on average 106 mutations from the
closest parent. This demonstrates the ability of a machine-learning
model to efficiently explore diverse sequences while minimizing the
resources wasted on screening of nonfunctional proteins.

With sufficient training data collected, the authors then used
Bayesian optimization to search for more thermostable variants.
First, four rounds of the batch GP upper-bound algorithm yielded a
diverse sampling of thermostable P450s. However, because none of
these variants increased the maximum observed T50, Romero et al.
checked their sequence–function model by screening a sequence pre-
dicted to be stabilized with high certainty. Two additional iterations

Parent

Training set

Screen

Sequence–activity pairs

Positive mutations are kept in parent for next round

Neutral mutations are screened again?

PLS to
classify mutations

Randomly combine
identified mutations

Remove negative
mutations

? ?

Fig. 4 | Directed evolution using PLS regression. In this approach, Fox et al. randomly recombine mutations previously identified through a classical
technique such as random or site-directed mutagenesis13. Variants with these mutations are screened and sequenced, and the data are used to fit a linear
model with the PLS algorithm. On the basis of the magnitude and sign of the contributions of the linear model, mutations are classified as beneficial,
neutral, or deleterious, after which mutations are fixed, retested, or removed, respectively. This approach improved the volumetric productivity of a
protein-catalyzed cyanation reaction roughly 4,000-fold in 18 rounds of evolution.

Nature Methods | VOL 16 | AUGUST 2019 | 687–694 | www.nature.com/naturemethods 691

http://www.nature.com/naturemethods

Review Article NaTure MeTHodS

of GP-UCB were then followed by a pure exploitation round of
five sequences, two of which were more thermostable than any pre-
viously observed P450s.

By using previously collected data, an accurate sequence–func-
tion model, and Bayesian optimization, the authors demonstrated
a framework for data-efficient protein engineering that has since
been transferred to other protein systems and properties12,13.

Conclusions and future directions
Machine-learning methods have demonstrated utility in directed
protein evolution. However, for broader applications of machine
learning, scientists will have to take advantage of unlabeled protein
sequences or sequences labeled for properties other than those of
specific interest to the protein engineer. Databases such as UniProt82
contain hundreds of millions of protein sequences, some of which
are annotated with structural or functional information. These
sequences contain information about the sequence motifs and pat-
terns that result in a functional protein, and the annotations provide
clues as to how structure and function arise from sequence. These
annotations can be learned from sequences74, and embeddings
trained on these annotations may be able to transfer knowledge
from UniProt to specific problems of interest83.

These large quantities of sequence data may also enable machine-
learning models to generate artificial protein diversity leading to
novel functions. Only a tiny fraction of the amino acid landscape
encodes functional proteins, and the complete landscape contains
cliffs and holes where small changes in sequence result in a com-
plete loss of function. Natural and designed proteins are samples
from the distribution of functional proteins, although these samples
are biased by evolutionary constraints. A method for sampling from
the distribution of functional proteins would enable large jumps to
previously unexplored sections of sequence space. Generative mod-
els of the distribution of functional proteins provide such a tool, and
are an attractive alternative to de novo design methods84.

Unlike discriminative models that learn the probability p(y|x) in
order to predict labels y given inputs x, generative models learn to
generate examples that are not in the training set by learning the
generating distribution p(x) for the training data. Generative mod-
els in other fields have been trained to generate faces85, sketches86,
and even music87. Instead of using neural network models to directly
learn the mapping from protein sequence to function, variational
autoencoders can be trained to learn the distribution of allowed

mutations within functional protein families88,89. An autoencoder is
a neural network that learns to encode an input as a vector (encod-
ing) and then reconstructs the input from the vector (decoding)
(Fig. 6). By learning an encoding with smaller dimensionality than
the original input, the model extracts the most important infor-
mation from the input. In a variational autoencoder, the learned
encoding is further constrained to encourage the encodings to be
densely packed to allow interpolation between examples and the
ability to mix and match properties90. Applied to protein sequences,
variational autoencoders can learn complex epistatic relationships
among variants, thus allowing predictions of variant functionality
based only on existing sequences, without a need for individual
measurements88,89.

In addition, the protein variants generated by a variational auto-
encoder or other generative model can be highly sequence divergent
from known sequences but potentially still functional91. These can
be starting points for further engineering, or the generative model
itself can be tuned in silico to produce sequences with a desired
property. Recently, recurrent neural networks have generated novel
antimicrobial peptides92,93 and protein structures94, and there has
been an effort to develop a mathematical framework for shifting
a generative model to sample sequences with one or more speci-
fied properties95,96. While these early examples show the potential
of generative models to discover sequences with desired functions,
this remains a promising and largely unexplored field.

Machine-learning methods have already expanded the number
of proteins and properties that can be engineered by directed evo-

Sequence–T50 pairs

Screen

Parents

UCB/LCB/EXPNew sequences

Maximize information

Training set

70

60

50

40

T
50

 (
ºC

)

Iteration

Par
en

t
Tra

in

UCBr1

UCBr2

UCBr3

UCBr4
LC

B

UCBr5

UCBr6
EXP

Fig. 5 | Directed evolution using GPs and Bayesian optimization. After the selection of an initial training set chosen to be maximally informative,
subsequent batches of sequences are chosen using the GP upper confidence bound (UCB) or lower confidence bound (LCB) algorithm, or to fully exploit
the model (EXP). The plot shows the T50 for variants found in each round.

MADTIVAVET...MADTIVAVET... Encoder

Code

Decoder

Input Reconstruction

Fig. 6 | Autoencoder. An autoencoder consists of an encoder model and
a decoder model. The encoder converts the input to a low-dimensional
vector (code). The decoder reconstructs the input from this code. Typically,
the encoder and decoder are both neural network models, and the entire
autoencoder model is trained end to end. The learned code should contain
sufficient information to reconstruct the inputs and can be used as input to
other machine-learning methods, or the autoencoder itself may be used as
a generative model.

Nature Methods | VOL 16 | AUGUST 2019 | 687–694 | www.nature.com/naturemethods692

http://www.nature.com/naturemethods

Review ArticleNaTure MeTHodS

lution. However, advances in both computational and experimen-
tal techniques, including generative models and deep mutational
scanning97, will allow for better understanding of fitness landscapes
and protein diversity. As researchers continue to collect sequence–
function data in engineering experiments and to catalog the natural
diversity of proteins, machine learning will be an invaluable tool
with which to extract knowledge from protein data and engineer
proteins for novel functions.

Received: 25 October 2018; Accepted: 17 June 2019;
Published online: 15 July 2019

References
	1.	 Dou, J. et al. Sampling and energy evaluation challenges in ligand binding

protein design. Protein Sci. 26, 2426–2437 (2017).
	2.	 Garcia-Borras, M., Houk, K. N. & Jiménez-Osés, G. Computational design of

protein function. In Computational Tools for Chemical Biology (ed.
Martín-Santamaría, S.) 87–107 (Royal Society of Chemistry, 2017).

	3.	 Mandecki, W. The game of chess and searches in protein sequence space.
Trends Biotechnol. 16, 200–202 (1998).

	4.	 Pierce, N. A. & Winfree, E. Protein design is NP-hard. Protein Eng. 15,
779–782 (2002).

	5.	 Smith, J. M. Natural selection and the concept of a protein space. Nature 225,
563–564 (1970).

	6.	 Orr, H. A. The distribution of fitness effects among beneficial mutations
in Fisher’s geometric model of adaptation. J. Theor. Biol. 238,
279–285 (2006).

	7.	 Khersonsky, O. & Tawfik, D. S. Enzyme promiscuity: a mechanistic and
evolutionary perspective. Annu. Rev. Biochem. 79, 471–505 (2010).

	8.	 Romero, P. A. & Arnold, F. H. Exploring protein fitness landscapes by
directed evolution. Nat. Rev. Mol. Cell Biol. 10, 866–876 (2009).

	9.	 Drummond, D. A., Silberg, J. J., Meyer, M. M., Wilke, C. O. & Arnold, F. H.
On the conservative nature of intragenic recombination. Proc. Natl Acad. Sci.
USA 102, 5380–5385 (2005).

	10.	Fox, R. J. et al. Improving catalytic function by ProSAR-driven enzyme
evolution. Nat. Biotechnol. 25, 338–344 (2007).

	11.	Romero, P. A., Krause, A. & Arnold, F. H. Navigating the protein fitness
landscape with Gaussian processes. Proc. Natl Acad. Sci. USA 110,
E193–E201 (2013).
This is the first study to combine SCHEMA recombination with the
GP-UCB algorithm to optimize a protein property.

	12.	Bedbrook, C. N., Yang, K. K., Rice, A. J., Gradinaru, V. & Arnold, F. H.
Machine learning to design integral membrane channelrhodopsins for
efficient eukaryotic expression and plasma membrane localization.
PLoS Comput. Biol. 13, e1005786 (2017).

	13.	Bedbrook, C. N., Yang, K. K., Robinson, J. E., Gradinaru, V. & Arnold, F. H.
Machine learning-guided channelrhodopsin engineering enables minimally-
invasive optogenetics. Preprint at https://www.biorxiv.org/
content/10.1101/565606v1 (2019).
This paper demonstrates the utility of machine learning for optimizing a
property that would not be possible to engineer with directed evolution
alone.

	14.	Wu, Z., Kan, S. B. J., Lewis, R. D., Wittmann, B. J. & Arnold, F. H. Machine
learning-assisted directed protein evolution with combinatorial libraries.
Proc. Natl Acad. Sci. USA 116, 8852–8858 (2019).

	15.	Hastie, T. & Tibshirani, R. The Elements of Statistical Learning: Data Mining,
Inference and Prediction (Springer, 2008).

	16.	Murphy, K. Machine Learning, a Probabilistic Perspective (MIT Press, 2012).
Murphy’s textbook provides a thorough introduction to modern machine
learning.

	17.	Liao, J. et al. Engineering proteinase K using machine learning and synthetic
genes. BMC Biotechnol. 7, 16 (2007).

	18.	Govindarajan, S. et al. Mapping of amino acid substitutions conferring
herbicide resistance in wheat glutathione transferase. ACS Synth. Biol. 4,
221–227 (2015).

	19.	Musdal, Y., Govindarajan, S. & Mannervik, B. Exploring sequence-function
space of a poplar glutathione transferase using designed information-rich
gene variants. Protein Eng. Des. Sel. 30, 543–549 (2017).

	20.	Wolpert, D. H. The lack of a priori distinctions between learning algorithms.
Neural Comput. 8, 1341–1390 (1996).

	21.	Li, Y. et al. A diverse family of thermostable cytochrome P450s created
by recombination of stabilizing fragments. Nat. Biotechnol. 25,
1051–1056 (2007).

	22.	Breiman, L. Classification and Regression Trees (Routledge, 2017).
	23.	Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
	24.	Friedman, J. H. Stochastic gradient boosting. Comput. Stat. Data Anal. 38,

367–378 (2002).

	25.	Tian, J., Wu, N., Chu, X. & Fan, Y. Predicting changes in protein
thermostability brought about by single- or multi-site mutations.
BMC Bioinforma. 11, 370 (2010).

	26.	Li, Y. & Fang, J. PROTS-RF: a robust model for predicting mutation-induced
protein stability changes. PLoS One 7, e47247 (2012).

	27.	Jia, L., Yarlagadda, R. & Reed, C. C. Structure based thermostability
prediction models for protein single point mutations with machine learning
tools. PLoS One 10, e0138022 (2015).

	28.	Cortes, C. & Vapnik, V. Support-vector networks. Mach. Learn. 20,
273–297 (1995).

	29.	Nadaraya, E. On estimating regression. Theory Probab. Its Appl. 9,
141–142 (1964).

	30.	Leslie, C., Eskin, E. & Noble, W. S. The spectrum kernel: a string kernel
for SVM protein classification. Pac. Symp. Biocomput. 2002,
564–575 (2002).

	31.	Leslie, C. S., Eskin, E., Cohen, A., Weston, J. & Noble, W. S. Mismatch
string kernels for discriminative protein classification. Bioinformatics 20,
467–476 (2004).

	32.	Jokinen, E., Heinonen, M. & Lähdesmäki, H. mGPfusion: predicting protein
stability changes with Gaussian process kernel learning and data fusion.
Bioinformatics 34, i274–i283 (2018).

	33.	Capriotti, E., Fariselli, P. & Casadio, R. I-Mutant2.0: predicting stability
changes upon mutation from the protein sequence or structure. Nucleic Acids
Res. 33, W306–W310 (2005).

	34.	Capriotti, E., Fariselli, P., Calabrese, R. & Casadio, R. Predicting protein
stability changes from sequences using support vector machines.
Bioinformatics 21, ii54–ii58 (2005).

	35.	Cheng, J., Randall, A. & Baldi, P. Prediction of protein stability changes
for single-site mutations using support vector machines. Proteins 62,
1125–1132 (2006).

	36.	Buske, F. A., Their, R., Gillam, E. M. & Bodén, M. In silico characterization of
protein chimeras: relating sequence and function within the same fold.
Proteins 77, 111–120 (2009).

	37.	Liu, J. & Kang, X. Grading amino acid properties increased accuracies of
single point mutation on protein stability prediction. BMC Bioinforma. 13,
44 (2012).

	38.	Zaugg, J., Gumulya, Y., Malde, A. K. & Bodén, M. Learning epistatic
interactions from sequence-activity data to predict enantioselectivity.
J. Comput. Aided Mol. Des. 31, 1085–1096 (2017).

	39.	Saladi, S. M., Javed, N., Müller, A. & Clemons, W. M. Jr. A statistical model
for improved membrane protein expression using sequence-derived features.
J. Biol. Chem. 293, 4913–4927 (2018).

	40.	Rasmussen, C. E. & Williams, C. K. I. Gaussian Processes for Machine
Learning (MIT Press, 2006).

	41.	Wilson, A. G. & Nickisch, H. Kernel interpolation for scalable structured
Gaussian processes (KISS-GP). In Proc. 32nd International Conference on
Machine Learning (eds. Bach, F. & Blei, D.) 1775–1784 (JMLR, 2015).

	42.	Wang, K. A. et al. Exact Gaussian processes on a million data points. Preprint
at https://arxiv.org/abs/1903.08114 (2019).

	43.	Pires, D. E., Ascher, D. B. & Blundell, T. L. mCSM: predicting the effects of
mutations in proteins using graph-based signatures. Bioinformatics 30,
335–342 (2014).

	44.	Mellor, J., Grigoras, I., Carbonell, P. & Faulon, J.-L. Semisupervised
Gaussian process for automated enzyme search. ACS Synth. Biol. 5,
518–528 (2016).

	45.	Saito, Y. et al. Machine-learning-guided mutagenesis for directed evolution of
fluorescent proteins. ACS Synth. Biol. 7, 2014–2022 (2018).

	46.	Zhang, S. et al. A deep learning framework for modeling structural features
of RNA-binding protein targets. Nucleic Acids Res. 44, e32 (2016).

	47.	Alipanahi, B., Delong, A., Weirauch, M. T. & Frey, B. J. Predicting the
sequence specificities of DNA- and RNA-binding proteins by deep learning.
Nat. Biotechnol. 33, 831–838 (2015).

	48.	Zeng, H., Edwards, M. D., Liu, G. & Gifford, D. K. Convolutional neural
network architectures for predicting DNA-protein binding. Bioinformatics 32,
i121–i127 (2016).

	49.	Hu, J. & Liu, Z. DeepMHC: deep convolutional neural networks for
high-performance peptide-MHC binding affinity prediction. Preprint at
https://www.biorxiv.org/content/early/2017/12/24/239236 (2017).

	50.	Jiménez, J., Doerr, S., Martínez-Rosell, G., Rose, A. S. & De Fabritiis, G.
DeepSite: protein-binding site predictor using 3D-convolutional neural
networks. Bioinformatics 33, 3036–3042 (2017).

	51.	Gomes, J., Ramsundar, B., Feinberg, E. N. & Pande, V. S. Atomic
convolutional networks for predicting protein-ligand binding affinity. Preprint
at https://arxiv.org/abs/1703.10603 (2017).

	52.	Mazzaferro, C. Predicting protein binding affinity with word embeddings and
recurrent neural networks. Preprint at https://www.biorxiv.org/content/
early/2017/04/18/128223 (2017).

	53.	Khurana, S. et al. DeepSol: a deep learning framework for sequence-based
protein solubility prediction. Bioinformatics 34, 2605–2613 (2018).

Nature Methods | VOL 16 | AUGUST 2019 | 687–694 | www.nature.com/naturemethods 693

https://www.biorxiv.org/content/10.1101/565606v1
https://www.biorxiv.org/content/10.1101/565606v1
https://arxiv.org/abs/1903.08114
https://www.biorxiv.org/content/early/2017/12/24/239236
https://arxiv.org/abs/1703.10603
https://www.biorxiv.org/content/early/2017/04/18/128223
https://www.biorxiv.org/content/early/2017/04/18/128223
http://www.nature.com/naturemethods

Review Article NaTure MeTHodS

	81.	de Jong, S. Simpls: an alternative approach to partial least squares regression.
Chemom. Intell. Lab. Syst. 18, 251–263 (1993).

	82.	The UniProt Consortium. UniProt: the universal protein knowledgebase.
Nucleic Acids Res. 45, D158–D169 (2017).

	83.	Pan, S. J. & Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data
Eng. 22, 1345–1359 (2010).

	84.	Baker, D. An exciting but challenging road ahead for computational enzyme
design. Protein Sci. 19, 1817–1819 (2010).

	85.	Radford, A., Metz, L. & Chintala, S. Unsupervised representation learning
with deep convolutional generative adversarial networks. Preprint at
https://arxiv.org/abs/1511.06434 (2015).

	86.	Ha, D. & Eck, D. A neural representation of sketch drawings. Sixth
International Conference on Learning Representations https://openreview.net/
forum?id=Hy6GHpkCW (2018).

	87.	Roberts, A., Engel, J., Raffel, C., Hawthorne, C. & Eck, D. A hierarchical
latent vector model for learning long-term structure in music. Preprint at
https://arxiv.org/abs/1803.05428 (2018).

	88.	Sinai, S., Kelsic, E., Church, G. M. & Nowak, M. A. Variational auto-encoding
of protein sequences. Preprint at https://arxiv.org/abs/1712.03346 (2017).

	89.	Riesselman, A. J., Ingraham, J. B. & Marks, D. S. Deep generative models of
genetic variation capture the effects of mutations. Nat. Methods 15,
816–822 (2018).
This study predicts the effects of mutations without using any
labeled data.

	90.	Kingma, D. P. & Welling, M. Auto-encoding variational Bayes. Preprint at
https://arxiv.org/abs/1312.6114 (2014).

	91.	Costello, Z. & Garcia Martin, H. How to hallucinate functional proteins.
Preprint at https://arxiv.org/abs/1903 (2019).

	92.	Müller, A. T., Hiss, J. A. & Schneider, G. Recurrent neural network model for
constructive peptide design. J. Chem. Inf. Model. 58, 472–479 (2018).

	93.	Gupta, A. & Zou, J. Feedback GAN (FBGAN) for DNA: a novel feedback-
loop architecture for optimizing protein functions. Preprint at https://arxiv.
org/abs/1804.01694 (2018).

	94.	Anand, N. & Huang, P. Generative modeling for protein structures. In
Advances in Neural Information Processing Systems 31 (eds. Bengio, S. et al.)
7504–7515 (Curran Associates, 2018).

	95.	Brookes, D. H. & Listgarten, J. Design by adaptive sampling. Preprint at
https://arxiv.org/abs/1810.03714 (2018).

	96.	Brookes, D. H., Park, H. & Listgarten, J. Conditioning by adaptive sampling
for robust design. Proc. Mach. Learn. Res. 97, 773–782 (2019).

	97.	Fowler, D. M. & Fields, S. Deep mutational scanning: a new style of protein
science. Nat. Methods 11, 801–807 (2014).

Acknowledgements
The authors thank Y. Chen, K. Johnston, B. Wittmann, and H. Yang for comments
on early versions of the manuscript, as well as members of the Arnold lab, J. Bois,
and Y. Yue for general advice and discussions on protein engineering and machine
learning. This work was supported by the US Army Research Office Institute for
Collaborative Biotechnologies (W911F-09-0001 to F.H.A.), the Donna and Benjamin
M. Rosen Bioengineering Center (to K.K.Y.), and the National Science Foundation
(GRF2017227007 to Z.W.).

Author contributions
K.K.Y., Z.W., and F.H.A. conceptualized the project. K.K.Y. wrote the manuscript with
input and editing from all authors.

Competing interests
The authors declare no competing interests.

Additional information
Reprints and permissions information is available at www.nature.com/reprints.

Correspondence should be addressed to F.H.A.

Peer review information: Nina Vogt was the primary editor on this article and managed
its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature America, Inc. 2019

	54.	Dehouck, Y. et al. Fast and accurate predictions of protein stability changes
upon mutations using statistical potentials and neural networks:
PoPMuSiC-2.0. Bioinformatics 25, 2537–2543 (2009).

	55.	Giollo, M., Martin, A. J., Walsh, I., Ferrari, C. & Tosatto, S. C. NeEMO: a
method using residue interaction networks to improve prediction of protein
stability upon mutation. BMC Genom. 15, S7 (2014).

	56.	Almagro Armenteros, J. J., Sønderby, C. K., Sønderby, S. K., Nielsen, H. &
Winther, O. DeepLoc: prediction of protein subcellular localization using
deep learning. Bioinformatics 33, 3387–3395 (2017).

	57.	Sønderby, S. K. & Winther, O. Protein secondary structure prediction with long
short term memory networks. Preprint at https://arxiv.org/abs/1412.7828 (2014).

	58.	Szalkai, B. & Grolmusz, V. Near perfect protein multi-label classification with
deep neural networks. Methods 132, 50–56 (2018).

	59.	Cao, R. et al. ProLanGO: protein function prediction using neural machine
translation based on a recurrent neural network. Molecules 22, 1732 (2017).

	60.	Bileschi, M. L. et al. Using deep learning to annotate the protein universe.
Preprint at https://www.biorxiv.org/content/10.1101/626507v3 (2019).

	61.	Hopf, T. A. et al. Three-dimensional structures of membrane proteins from
genomic sequencing. Cell 149, 1607–1621 (2012).

	62.	Snoek, J., Larochelle, H. & Adams, R. P. Practical Bayesian optimization of
machine learning algorithms. In NIPS ’12: Proceedings of the 25th
International Conference on Neural Information Processing Systems
(eds. Pereira, F. et al.) 2951–2959 (Curran Associates, 2012).

	63.	Domingos, P. A few useful things to know about machine learning. Commun.
ACM 55, 78–87 (2012).

	64.	Bengio, Y., Courville, A. & Vincent, P. Representation learning: a review
and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35,
1798–1828 (2013).

	65.	Kawashima, S. et al. AAindex: amino acid index database, progress report
2008. Nucleic Acids Res. 36, D202–D205 (2008).

	66.	Ofer, D. & Linial, M. ProFET: feature engineering captures high-level protein
functions. Bioinformatics 31, 3429–3436 (2015).

	67.	Barley, M. H., Turner, N. J. & Goodacre, R. Improved descriptors for the
quantitative structure–activity relationship modeling of peptides and proteins.
J. Chem. Inf. Model. 58, 234–243 (2018).

	68.	Qiu, J., Hue, M., Ben-Hur, A., Vert, J.-P. & Noble, W. S. A structural
alignment kernel for protein structures. Bioinformatics 23, 1090–1098 (2007).

	69.	Henikoff, S. & Henikoff, J. G. Amino acid substitution matrices from protein
blocks. Proc. Natl Acad. Sci. USA 89, 10915–10919 (1992).

	70.	Asgari, E. & Mofrad, M. R. Continuous distributed representation of
biological sequences for deep proteomics and genomics. PLoS One 10,
e0141287 (2015).

	71.	Ng, P. dna2vec: consistent vector representations of variable-length k-mers.
Preprint at https://arxiv.org/abs/1701.06279 (2017).

	72.	Kimothi, D., Soni, A., Biyani, P. & Hogan, J. M. Distributed representations for
biological sequence analysis. Preprint at https://arxiv.org/abs/1608.05949 (2016).

	73.	Yang, K. K., Wu, Z., Bedbrook, C. N. & Arnold, F. H. Learned protein
embeddings for machine learning. Bioinformatics 34, 2642–2648 (2018).

	74.	Schwartz, A. S. et al. Deep semantic protein representation for annotation,
discovery, and engineering. Preprint at https://www.biorxiv.org/content/
early/2018/07/10/365965 (2018).

	75.	Alley, E. C., Khimulya, G., Biswas, S., AlQuraishi, M. & Church, G. M.
Unified rational protein engineering with sequence-only deep representation
learning. Preprint at https://www.biorxiv.org/content/10.1101/589333v1 (2019).

	76.	Rives, A. et al. Biological structure and function emerge from scaling
unsupervised learning to 250 million protein sequences. Preprint at
https://www.biorxiv.org/content/10.1101/622803v2 (2019).

	77.	Bepler, T. & Berger, B. Learning protein sequence embeddings using
information from structure. Seventh International Conference on Learning
Representations https://openreview.net/forum?id=SygLehCqtm (2019).

	78.	Yang, K. K., Chen, Y., Lee, A. & Yue, Y. Batched stochastic Bayesian
optimization via combinatorial constraints design. Proc. Mach. Learn. Res. 89,
3410–3419 (2019).

	79.	Srinivas, N., Krause, A., Kakade, S. M. & Seeger, M. Gaussian process
optimization in the bandit setting: no regret and experimental design. In
Proc. 27th International Conference on Machine Learning (eds. Fürnkranz, J. &
Joachims, T.) 1015–1022 (Omnipress, 2010).

	80.	Fox, R. et al. Optimizing the search algorithm for protein engineering by
directed evolution. Protein Eng. 16, 589–597 (2003).
This study is the first to use machine learning to guide directed evolution.

Nature Methods | VOL 16 | AUGUST 2019 | 687–694 | www.nature.com/naturemethods694

https://arxiv.org/abs/1511.06434
https://openreview.net/forum?id=Hy6GHpkCW
https://openreview.net/forum?id=Hy6GHpkCW
https://arxiv.org/abs/1803.05428
https://arxiv.org/abs/1712.03346
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1903
https://arxiv.org/abs/1804.01694
https://arxiv.org/abs/1804.01694
https://arxiv.org/abs/1810.03714
http://www.nature.com/reprints
https://arxiv.org/abs/1412.7828
https://www.biorxiv.org/content/10.1101/626507v3
https://arxiv.org/abs/1701.06279
https://arxiv.org/abs/1608.05949
https://www.biorxiv.org/content/early/2018/07/10/365965
https://www.biorxiv.org/content/early/2018/07/10/365965
https://www.biorxiv.org/content/10.1101/589333v1
https://www.biorxiv.org/content/10.1101/622803v2
https://openreview.net/forum?id=SygLehCqtm
http://www.nature.com/naturemethods

	Machine-learning-guided directed evolution for protein engineering

	Building a machine-learning sequence–function model

	Choosing a model

	Model training and evaluation

	Vector representations of proteins

	Using sequence–function predictions to guide exploration

	Case study 1: using partial least-squares regression to maximize enzyme productivity

	Case study 2: using Bayesian optimization to maximize the thermostability of cytochrome P450

	Conclusions and future directions

	Acknowledgements

	Fig. 1 Directed evolution with and without machine learning.
	Fig. 2 A general heuristic for choosing a machine-learning sequence–function model for proteins.
	Fig. 3 GP-UCB algorithm.
	Fig. 4 Directed evolution using PLS regression.
	Fig. 5 Directed evolution using GPs and Bayesian optimization.
	Fig. 6 Autoencoder.

