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The fraction of proteins that retain wild-type function after mutation has
long been observed to decline exponentially as the average number of
mutations per gene increases. Recently, several groups have used error-
prone polymerase chain reactions (PCR) to generate libraries with 15 to 30
mutations per gene, on average, and have reported that orders of
magnitude more proteins retain function than would be expected from
the low-mutation-rate trend. Proteins with improved or novel function
were isolated disproportionately from these high-error-rate libraries,
leading to claims that high mutation rates unlock regions of sequence
space that are enriched in positively coupled mutations. Here, we show
experimentally that error-prone PCR produces a broader non-Poisson
distribution of mutations consistent with a detailed model of PCR. As error
rates increase, this distribution leads directly to the observed excesses in
functional clones. We then show that while very low mutation rates result
in many functional sequences, only a small number are unique. By contrast,
very high mutation rates produce mostly unique sequences, but few retain
function. Thus an optimal mutation rate exists that balances uniqueness
and retention of function. Overall, high-error-rate mutagenesis libraries are
enriched in improved sequences because they contain more unique,
functional clones. Our findings demonstrate how optimal error-prone PCR
mutation rates may be calculated, and indicate that “optimal” rates depend
on both the protein and the mutagenesis protocol.
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Introduction

Laboratory evolution has been used to improve
protein properties bymimicking natural evolution’s
stepwise exploration of sequence space1, steadily
improving protein activity or thermostability
through repeated rounds of low-frequency
mutation and selection. Because the fraction of
proteins retaining function appears to decline
exponentially with increasing numbers of amino
acid substitutions,2–5 low mutation rates seek to
create mutational diversity without destroying
activity so that improved clones can be found.6
lsevier Ltd. All rights reserve
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Recently, several groups reported construction of
mutant libraries using high-mutation-rate error-
prone polymerase chain reactions (EP-PCR) to
probe distant regions of sequence space for an
antibody fragment (up to an average hmntiZ22.5
nucleotide mutations per gene),3,7 hen egg lyso-
zyme (up to hmntiZ15.25),8 and TEM-1 b-lactamase
(up to hmntiZ27.2).9 Where both high and low error
rates were assessed, the exponential trend in loss of
function established for low hmnti was violated
spectacularly at the highest rates, with orders of
magnitude more functional clones isolated than
would be expected.3,7,8 Two studies reported
improved or novel function more often in these
high-mutation-rate libraries,3,9 leading to sugges-
tions that low mutational pressure may not be
optimal,3,9 and that hypermutagenesis can, without
an exponentially increasing cost in inactivated
sequences, explore multiple interacting mutations
d.
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inaccessible to low-error-rate mutagenesis.9 These
putative interactions could involve synergistic
interactions to increase function directly, or combi-
nations in which one or a few mutations increase
function at the cost of folding or structural stability,
the negative effects of which are suppressed by
additional compensatory stabilizing mutations
elsewhere in the protein.

The degree to which mutations interact, and thus
mutational effects deviate from independence, is
known as epistasis. Independent mutational effects
imply an exponential decline in fraction functional
with mutational distance, so the results of the
studies mentioned above suggest that mutations
interact epistatically, on average. Such a finding is of
fundamental interest in evolutionary biology,10,11

and is potentially decisive in answering the major
open question “Why is there sex?”12 Moreover, the
discovery of reservoirs of positively interacting
mutations would fundamentally change strategies
for in vitro enzyme engineering by evolutionary
methods.9 Therefore, a careful analysis of these
results is imperative.

Quantitative analysis of high-frequency muta-
genesis results often assumes a Poisson distribution
of mutations in EP-PCR, an idea introduced by
Shafikhani et al.4 This group’s careful study on
Bacillus lentus subtilisin found an accurately repro-
ducible exponential decline in fraction functional
in all libraries where functional proteins were
found, up to hmntiZ15, contrary to the upward
trend reported later.

To examine the mutational distribution generated
by high-error-rate EP-PCR, we constructed two
large libraries of single-chain Fv (scFv) antibody
mutants. The wild-type scFv antibody fragment
derived from the 26-10 monoclonal antibody13

binds digoxigenin with high affinity, and has been
expressed as a fusion to the Escherichia coli outer
membrane protein Lpp-OmpA 0, allowing detection
of mutants binding fluorescent dye-conjugated
digoxigenin by fluorescence-activated cell sorting
(FACS).3 Libraries were assayed for mutant reten-
tion of wild-type affinity for digoxigenin (briefly,
retention of function). These libraries were con-
structed and assayed exactly as in a previous study
by two of the present authors,3 making the results
of both studies directly comparable. We were able
to determine how the mutational statistics relate
to PCR experimental parameters and to retention of
function.

We show that mutations introduced by EP-PCR
at high error rates do not follow the Poisson
distribution, but rather a previously proposed
distribution derived from a model of the actual
PCR process.14 We derive the expected fraction
of functional mutants based on this more
realistic model, and show that many reported
experimental mutation data follow the predictions
of this model. We then introduce a simple
measure of optimality to evaluate optimal mutation
rates for improvement of protein function. Our
results show that the trends observed in earlier
studies do not constitute evidence for positive
epistasis.
Results

Distribution of mutations generated by EP-PCR

The probability Pr(f) that an EP-PCR-amplified
sequence retains function can be obtained as
follows. Sun modeled EP-PCR by assuming n
thermal cycles during which DNA strands are
duplicated with probability l, the PCR efficiency
(assumed constant, realistic for large amounts of
starting template15,16), resulting in dZnl DNA
doublings and an average of hmnti nucleotide
mutations per sequence.14 The mutational distri-
bution under these assumptions can be written,14

with xZ ðhmntið1ClÞÞ=ðnlÞ, as:
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At large hmnti, small n or low l, all of which broaden
the variance, deviation from the Poisson assump-
tion that the variance is equal to the mean hmnti can
be profound. We call equation (1) the PCR
distribution.

Results of mutagenesis

To examine the mutational distribution generated
by high-error-rate EP-PCR, for which the Poisson-
based and PCR-based models make distinct pre-
dictions,wegenerated two libraries (AandB) of scFv
antibody clones using similar mutagenic conditions.
We assayed both libraries for retention of wild-type-
like binding to digoxigenin (retention of function)
and sequenced 45C naı̈ve clones from each library.
Poisson-distributed mutations will have equal

mean and variance, while PCR-distributed
mutations will always have a variance larger than
the mean. Figure 1 shows the distribution of
nucleotide mutations observed in library A
(46 sequences) and library B (45 sequences);
summary statistics are shown in Table 1, and
mutational spectra are reported in Table 2.
While visual inspection of the mutation histo-

grams overlaid with the theoretical distributions
cannot distinguish between the two models, the
relevant statistics are stark and favor the PCR
distribution while rejecting the Poisson distri-
bution. For library A, hmntiZ15.8 and s2

mnt
Z26:3;

for library B, hmntiZ19.8 and s2
mnt

Z36:1 (Table 1).
The probability of measuring variances at least this
large given an underlying Poisson distribution
with the observed mean is P!0.005 for library A
and P!0.001 for library B; the joint probability of



Figure 1. Mutational distri-
butions for two high-error-rate
scFv antibody libraries compared
with Poisson and PCR distri-
butions. (a) Library A, 46
sequences. (b) Library B, 45
sequences. The corresponding
PCR distributions with the same
means (see Table 1) (continuous
line, nZ30 cycles and efficiency
lZ0.6) and Poisson distribution
(broken line) are shown for com-
parison. For these histograms, the
Poisson distribution may be
rejected in favor of the PCR
distribution (see the text).
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observing two libraries with variances this high is
P!10K5. With a PCR efficiency of lZ0.6 (18
doublings), the PCR distribution yields expected
variances of 29.6 (library A) and 41.4 (library B),
consistent with the observed values.

Using a likelihood ratio test on the mutational
samples (see Materials and Methods), we reject the
Poisson distribution in favor of the PCR distribution
with two additional degrees of freedom (n and l) for
library A (c2Z7.39, P!0.025) and for library B
(c2Z8.63, P!0.025). (Using two additional degrees
of freedom is conservative, since n is fixed in each
Table 1. scFv antibody mutational results and corresponding

Library Sequenced hmnti s2
mnt

ðPð

A 46 15.8G0.8 26
B 45 19.8G0.9 36

a Assumed efficiency lZ0.6 (18 DNA doublings).

Table 2. Mutational spectra for libraries

Library A (33,396 bp sequenced

Type Number Fractio

A/T, T/A 172 0.24
A/C, T/G 7 0.01
A/G, T/C 336 0.46
G/A, C/T 188 0.26
G/C, C/G 11 0.02
G/T, C/A 11 0.02
Total mutations 725
Non-synonymous 501 0.69
Termination 19 0.03

In each gene, 726 nucleotides were sequenced. Sequences containing f
discarded.
experiment.) Thus, the PCR distribution (equation
(1)) better describes the data than the previously
assumed Poisson model.

Retention of protein function after mutation

What is the effect of the non-Poisson mutational
distribution on the fraction of clones in a library that
retain function? We assume the probability an
individual protein will retain function after maa

amino acid substitutions declines exponentially
according to PrðfjmaaÞZnmaa , where n can be
predictions for PCR and Poisson-distributed mutations

s2
mnt

Þ if Poisson) PCR s2
mnt

a Poisson s2
mnt

.3 (P!0.005) 29.6 15.8

.1 (P!0.001) 41.4 19.8

) Library B (32,670 bp sequenced)

n Number Fraction

106 0.12
7 0.01
202 0.23
529 0.60
28 0.03
17 0.02
889
634 0.71
44 0.05

rameshift events, which occurred at a very low level (!5%), were
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interpreted as the average fraction of functional
one-mutant neighbors on the protein-sequence-
space network.10,17 This assumption is consistent
with experimental results obtained without using
PCR,2 and with theoretical considerations.5 This
model assumes no average epistasis.

The probability a nucleotide mutation produces a
non-synonymous change is assumed to be binomial,
withparameterpns, corresponding to theassumption
that mutations hit distinct codons. This assumption
and the value pnsZ0.7 appear realistic (the precise
parameter value will vary somewhat according to
the codon composition of a gene).3 In the following
analysis, non-synonymous changes include inser-
tions, deletions, mutations to stop codons, and
mutations that change the encoded amino acid:
pnsZpinsCpdelCpstopCpaa. The first three types of
changes are assumed to truncate and inactivate the
encoded protein; we assume they constitute a
fraction ptrZpinsCpdelCpstopz0:05K0:07 of
mutations (see Supplementary Data of Drummond
et al.18) and use the value ptrZ0.06 for our
calculations. The probability that a non-synonymous
mutation does not truncate the encodedprotein (and
thus changes only the encoded amino acid) is
(1Kptr/pns). The probability a sequence with mnt

nucleotide mutations retains function includes all
these effects and is therefore:

PrðfjmntÞZ
Xmnt

mnsZ0

PrðmnsjmntÞPrðnon trunc:jmnsÞ

!Prðfjmns amino acid changesÞ
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mnt
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mnt

(2)

Under the assumption of Poisson-distributed
ciency l. (b) Comparison to high-hmnti subtilisin data from S
which were produced by a multi-round protocol. Conditions (
cycles, hmntiZ2.01 or 5.17 nucleotide mutations per gene. The
round protocol (continuous line) and a single-round protoco
observed exponential decline in fraction functional.
mutations, Shafikhani et al. showed that, if a fraction
qi of nucleotide mutations inactivate a protein, the
fraction functionaldeclines exponentially as eKhmntiqi .4

Because qiZ ð1Knð1Kptr=pnsÞÞpns, we expect PrðfÞZ
eKhmntið1Knð1Kptr=pnsÞÞpns in a Poisson-distributed library.
This exponential decline became the experimental
expectation for subsequent groups, leading to
surprise when functional mutants were later found
in great excess at high average mutation rates. By
combining equations (1) and (2), and assuming gene
length L/N, amild assumptionwhen hmnti/L, we
find the probability a sequence from the library will
retain function is:

PrðfÞZ
XN
mntZ0

PrðfjmntÞPrðmntÞ

Z
1Cl exp K hmntið1ClÞ
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Equation (3)makes severalpredictions. In the limit
of many thermal cycles n, all else equal, the original
expectation PrðfÞZeKhmntið1Knð1Kptr=pnsÞÞpns (above) is
recovered. If the number of thermal cycles n is
proportional to hmnti, following the protocol of
Shafikhani et al., then Pr(f) should be a perfect
exponential in hmnti, which is precisely what this
group reports. However, if n is fixed as in other
studies,3,8,9 then Pr(f) curves upward relative to an
exponential decline as hmnti increases. PCR efficiency
l decreases with increasing hmnti,

19 which increases
the expected curvature. In other words, there will be
more functional sequences than predicted by the
exponential decline.
Using the previously reported scFv antibody data

for low hmnti,
3 where the Poisson assumption is not

unreasonable, and the reported value qiZ0.6, we
can estimate nz0.2 for the antibody binding task.
For the subtilisin data,4 we similarly use the
Figure 2. Equation (3) explains
previously reported experimental
results. (a) Comparison to scFv
antibody data from Daugherty et
al.3 (,) and present work (-); for
conditions, see the footnotes to
Table 3. The broken line is the
original fit reported,3 e�hmnt iqi with
qiZ0.6. The continuous lines show
equation (3) for the two libraries
reported here (bottom) and for the
highest-hmnti library conditions
reported previously (top).3

Changes in line curvature are due
entirely to changes in PCR effi-

hafikhani et al.4 (open squares with standard error bars),
all per-round): dZnlZ10 DNA doublings, nZ13 thermal
fractions functional predicted by equation (3) for a multi-
l (dotted line) show that the theory properly predicts the



Table 3. Comparison of retention of wild-type digoxigenin binding for scFv antibody libraries with analytical
predictions

hmnti N
Observed
functional

Observed
% funct.

Predicted %
funct.a (Poisson)

Predicted %
funct.a

(equation (3))
Predicted

Uf

1.7 3!105 1.4!105 40.0 36.1 38.8 2473
3.8 1!106 6.7!104 6.7 10.2 12.9 8811
15.8b – – 0.12 0.0076 0.095 –
19.8b – – 0.041 0.00069 0.029 –
22.5 6!106 1!104 0.17 0.00014 0.15 1463

a Assumed scFv nZ0.2 (see the text), efficiency lZ0.6 for all but highest-hmnti library, for which we estimate efficiency lZ0.3.
b Only fractions functional were recorded for these libraries.

810 High-error-rate Random Mutagenesis
reported qiZ0.27 to estimate nz0.65. With these
values for n, Figure 2 compares the predictions of
equation (3) to the observed fractions of functional
clones at various library mutation levels hmnti
reported by Daugherty et al.3 and in the present
work for the scFv antibody fragment (Figure 2(a))
(see also Table 3) and Shafikhani et al.4 for subtilisin
(Figure 2(b)). The agreement is quite good and
demonstrates that the excess of functional clones
can in fact be consistent with an underlying
exponential relationship between number of
amino acid substitutions and probability of retained
wild-type function. To further test our analytical
predictions, we simulated single-round EP-PCR
using template DNA strands encoding a folded
“wild-type” lattice protein. The amplified DNAwas
translated into lattice proteins, which were scored
as functional if they retained the fold and thermo-
stability of the wild-type. We observed excellent
agreement with equation (3) (see Supplementary
Data).

The reason for deviation from an exponential
decline is hinted at in the limit of large average
mutation rates, when the exponential part of
equation (3) vanishes and Pr(f) approaches a
constant, Pr(f)/(1Cl)Kn. For a mutationally
fragile protein such as the scFv antibody perform-
ing the digoxigenin binding task, this can occur at
experimentally accessible mutation rates, as can be
seen most clearly in the library originally reported3

and revisited by Georgiou7. As the mutation rate
increases, the antibody fragment becomes “quite
insensitive to mutational load” and Pr(f) flattens out
at a value of roughly 0.0018.7 Most interestingly,
this limiting value is a function only of the PCR
conditions, and does not depend on the protein at
all.

What causes these counterintuitive results?
EP-PCR at high frequency generates heavily
mutated sequences by a process akin to Xeroxing
copies of copies: low-fidelity copies give rise to even
lower-fidelity copies, yet a copy, once produced, is
not replaced, but remains in the final distribution
of copies. During the PCR, the first generation of
mutants, amplified directly from the wild-type
template gene and carrying few mutations, persists
in the mix and continues to reproduce copies with
few additional mutations throughout subsequent
cycles. The protein products of these less-mutated
copies retain function at a greatly elevated rate
compared to the average sequence, leading to
upward bias in the functional fraction.

Why are improved mutants found more often in
high-error-rate libraries?

If statistical effects of the mutagenesis protocol
can explain the dramatic deviation from exponen-
tial in the fraction of functional sequences without
recourse to epistasis, why are high-hmnti libraries
enriched in improved clones, despite a smaller
number of clones retaining any function? To
address this question, we now explore another
consequence of PCR’s broad mutational distri-
bution.

The effective size of a library is not the number of
mutants screened, the number usually reported, but
rather the number of unique mutants screened. In a
library of 106 transformants of the scFv antibody
gene (726 bp, 242 amino acid residues) with an
average of one mutation per sequence, most of the
2178 possible 1-mutants will occur of the order of
100 times, reducing the effective library size by
roughly two orders of magnitude. Most muta-
genesis is concerned with protein sequences,
where additional losses occur. Truncations due to
frameshift mutations or mutations to stop codons
eliminate a significant fraction of sequences. With
one nucleotide mutation per codon, an average of
5.7 amino acid substitutions (out of a maximum of
19) are accessible due to the conservatism of the
genetic code, for a total of 242!5.7Z1379 accessible
amino acid sequences with one substitution. (We
ignore the effects of synonymous mutations.) Thus
106 transformants yield just over 103 unique protein
sequences, about a 103-fold reduction in the
effective library size.

We estimate the number of unique sequences in
an EP-PCR library in the following way. We derive
the distribution of non-synonymous substitutions
Pr(mns) after EP-PCR, estimate the number of non-
truncated amino acid sequences Nmns

with each mns

in a library of a given size, compute the expected
number of unique sequences Umns

at each mns by
accounting for recurrence among the Nmns

sequences, and then find the expected number of
unique sequences U by summing the Umns

.
With PCR conditions denoted as before and an
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average number of nucleotide mutations per
sequence hmnti, what is the distribution of the
number of non-synonymous substitutions per
sequence Pr(mns)? We assume, as before, that each
nucleotide mutation causes a non-synonymous
change with probability pns, so we obtain:

PrðmnsÞZ
XL

mntZmns

PrðmntÞ
mnt

mns

� �
pmns
ns ð1KpnsÞ

mntKmns

Z ð1ClÞKn
Xn
kZ0

n

k

 !
lk

ðkyÞmnseKky

mns!

(4)

with:

yZ
hmntipnsð1ClÞ

nl

That is, the distribution of non-synonymous substi-
tutions Pr(mns) is equivalent, in form, to the
distribution of nucleotide mutations Pr(mnt), but
with an average of hmnsiZ hmntipns substitutions. For
simplicity, we will drop the subscript for non-
synonymous substitutions and use m.

Of the sequences with m non-synonymous
substitutions, some will also be truncated by
frameshifts or stop codons. Because we treat all
truncations as non-synonymous changes, the frac-
tion of non-truncated sequences with m substi-
tutions is Prðnon-truncatedjmÞZ ð1Kptr=pnsÞ

m.
Given an EP-PCR library of N transformants,
NmZN Pr(m) Pr(non-truncatedjm), on average, are
non-truncated proteins with m amino acid substi-
tutions.

Of these proteins withm substitutions, howmany
unique sequences exist? Only one unique sequence
has mZ0. For any m there are, on average,

Mm Z
L=3

m

� �
5:7m

total unique proteins with, at most, one mutation
per codon, where L is the length of the gene in
nucleotides.

Given Nm samples, how many of these Mm
of unique and functional sequences in the same library. The lin
parameters. An optimal mutation rate exists that balances u
lower the fraction of unique and functional sequences, but d
unique proteins can we expect to find? This is
the classic “coupon collector problem”20 and
directly addresses the question of mutant
recurrence, since any sample either yields a new,
unique protein or one that has been sampled before.
The expected number of unique sequences
produced by equiprobably samplingMm sequences
Nm times is:

Um ZMm KMmð1K1=MmÞ
Nm

zMmð1KeKNm=MmÞ

(5)

For example, to sample 99% of the MmZ1379
accessible 1-mutants of scFv requires 4.6-fold over-
sampling (NmZ6350 samples) on average. Taking
1379 samples, NmZMm, on average, yields only 872
unique proteins, or 63% of the total. In practice, for
proteins of a few hundred amino acid residues and
libraries of a few million transformants, recurrence
need be considered only for small values of m (m!
3), because sequence space becomes large enough to
make recurrence extremely unlikely at higher m
values so that UmzNm. The total number of unique
sequences in a library is simply the sum over all
unique sequences with a specific number of
substitutions:

UZ
XL=3
mZ0

Um (6)

Figure 3(a) shows the fraction of unique
sequences U/N obtained from simulations (see
Materials and Methods) in which the scFv gene
was mutated according to PCR statistics with the
observed frequencies (Table 2, with 3% frameshift
rate) or unbiased frequencies (all mutations equally
weighted, with 3% frameshift rate). The prediction
from equation (6) is also plotted and agrees well.
Increasing the mutation rate increases the number
of unique sequences because fewer are lost to
recurrence. Note that, even at the highest mutation
rates, the fraction of unique sequences does not
approach 1.0, because sequences truncated by
frameshifts and stop codons are not considered
unique and accumulate at increasing levels as the
mutation rate is increased.
Figure 3. Error-prone PCR error
rates strongly influence the fraction
of unique and functional
sequences. (a) Fraction of unique
sequences in a simulated library of
NZ50,000 scFv clones (nZ0.2)
using the observed mutational
spectrum ($) or an unbiased spec-
trum (%). The line is equation (6)
(divided by N) evaluated with nZ
30 thermal cycles, efficiency lZ0.6,
pnsZ0.76 and ptrZ0.07. (b) Fraction

e is equation (7) (divided by N) evaluated using the same
niqueness with retention of function. Mutational biases
o not alter the optimal mutation rate significantly.
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Of greater interest is the expected number of
unique sequences in the library that are expected to
retain at least wild-type function, because these
sequences are a superset of potentially improved
sequences. We can estimate the number of unique,
functional sequences as:

Uf Z
XL=3
mZ0

Umn
m (7)

Figure 3(b) shows the fraction of unique, functional
sequences Uf/N obtained from the same simu-
lations as in Figure 3(a), with equation (7) plotted
for comparison. Biases in mutation frequencies
decrease the fraction of unique sequences but
preserve the overall form. Results using unbiased
frequencies are predicted accurately by our theo-
retical treatment.

Clearly, low-error-rate libraries suffer from dra-
matic mutant recurrence, an effect avoided at high
error rates. Improved proteins are found often in
high-error-rate libraries because these libraries
contain more unique functional sequences.
Optimal random mutagenesis

A typical and important goal in protein engin-
eering is to improve an existing protein function,
for example by increasing catalytic rate, thermo-
stability, binding affinity, or specificity. While
rational engineering has made significant strides,
high-throughput screening of large mutant libraries
for improved clones is both a dominant strategy to
achieve this goal and an area of active research7.

Given a choice of protein scaffold, a library of
fixed size, and no reliable basis for rational
engineering, a simple measure of library optimality
is the number of unique functional sequences it
contains. Figure 3 shows that, given this measure,
an optimal mutation rate exists that balances
diversity (uniqueness is lost if hmnti is too low)
with retained function (functional sequences are
0.2) are shown at each average mutation rate hmnti if 10
3 trans

hmntioptZ2.8) are screened. (b) Optimal mutation rate (C) d
functional sequences given by equation (7) are shown for t
transformants) using nZ30 thermal cycles (top, hmntioptZ2.8)
recurrence leads to profound loss of uniqueness at low hmnti, a
function.
rare if hmnti is too high). Mutational biases do not
affect the optimal mutation rate significantly.

The optimum depends on the number of
transformants sampled, the PCR protocol used,
and the wild-type protein being mutated, among
other parameters. Figure 4(a) compares predicted
optimal mutation rates under identical PCR con-
ditions for the scFv antibody (nz0.2), depending on
whether 103 or 106 clones are screened. The
difference, 1.3 average nucleotide substitutions,
corresponds to one amino acid substitution, on
average. Figure 4(b) compares predicted optimal
mutation rates under identical conditions and with
the same wild-type protein, but using 30 thermal
cycles (as in the present work) in one case and two
cycles (as used by Zaccolo & Gherardi9) in the other.
A difference of one nucleotide mutation results.
Optimal rates depend on protein mutational
tolerance as reflected by n: the more tolerant the
protein, the higher the optimal mutation rate (not
shown).

Table 3 lists estimates forUf given the scFv library
experimental conditions reported here and pre-
viously.3 Despite the over 200-fold lower observed
percentage of functional transformants isolated
from the highest-hmnti library relative to the lowest,
and the 14-fold fewer functional sequences
observed, only 60% fewer unique functional
sequences are expected in the highest-hmnti library.
Given the experimental parameters of the highest-
hmnti library and altering only the mutation rate, the
rate hmntiZ11.0 is predicted to produce more unique
functional sequences (O10,000) than any of the
reported libraries. The optimal mutation rate given
the highest-hmnti experimental parameters is pre-
dicted to be roughly hmntiZ3.0, which is predicted
to yield O34,000 unique, functional sequences.
Discussion

Laboratory evolution by random mutagenesis
remains the most effective strategy for improving
Figure 4. The requirement for
uniqueness reduces effective
library size and leads to library-
dependent and protocol-depen-
dent optimal library mutation
rates. (a) Optimal mutation rate
(C) depends on library size. Pre-
dicted fractions of unique
functional sequences given by
equation (7) for the same protocol
(nZ30 thermal cycles with effi-
ciency lZ0.6, pnsZ0.76 and ptrZ
0.07) and protein (scFv-like, nZ

formants (top, hmntioptZ1.5) or 106 transformants (bottom,
epends on PCR protocol. Predicted fractions of unique
he same protein (scFv-like, nZ0.2) and library size (105

or nZ2 thermal cycles (bottom, hmntioptZ1.8). In all cases,
nd the optimal hmnti balances uniqueness and retention of
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enzyme properties given a choice of scaffold and no
reliable basis for rational engineering. The possi-
bility that distant regions of sequence space harbor
excesses of functional and, for at least some
enzymatic tasks, improved proteins has been
advanced several times, with significant experi-
mental evidence to bolster the claims. We have
shown that a more accurate model of EP-PCR than
used previously, due to Sun,14 is required to
describe adequately the mutational distribution
resulting from high-error-rate EP-PCR. This
model, in turn, provides straightforward expla-
nations for the previously observed experimental
findings: (1) the excess functional proteins observed
at high hmnti is predictable using equation (3), is due
to low-mutation sequences generated early in the
reaction, and is consistent with an exponential
decrease in retention of function with amino acid
substitution level; and (2) loss of functional
sequences at high mutation rates can be balanced
by diversity in the form of more unique sequences,
improving sampling of sequence space and leading
to a higher probability that improved mutants will
be found if they exist. We have demonstrated the
often-overlooked importance of accounting for
recurrence of mutants when estimating how much
of sequence space a library covers, extending
previous work on modeling effects of mutational
bias.21 With our simple definition of library
optimality as maximizing the number of unique,
functional proteins, these two observations lead to
an optimal mutation rate for EP-PCR, which can be
estimated using our analytical results. However,
optimal mutation rates are both protocol and
protein-dependent. Optimal rates derived for
EP-PCR using one set of conditions do not
necessarily hold for another set (Figure 4), and are
highly unlikely to hold for saturation mutagenesis
or site-directed mutagenesis, for which uniqueness
is rarely a problem and the distribution of mutation
levels in a typical library is tight and easily
controllable.

We have explained several disparate mutagenesis
results using only a single parameter unrelated to
experimental protocols: n, the average probability
of retaining wild-type function after a random
amino acid substitution.5 It follows that these
experiments can be used to measure n using the
analytical tools we have introduced here, with an
important caveat. Because multiple mutations per
codon, rarely found in EP-PCR even at high
mutation rates (though not always22), are necessary
to experimentally measure n, such experiments
cannot measure this parameter directly but can
provide a credible upper bound due to the
conservative nature of the genetic code. While n
relates simply to the “structural plasticity” qiZ ð1K
nð1Kptr=pnsÞÞpns proposed by Shafikhani et al.,4 our
results show that the emergence of a perfect
exponential decline in their experiments likely
depended both on a fundamental property of
proteins and the particular experimental protocol
employed. We also distinguish between genetic
mutations that produce truncated protein products,
essentially all of which lack function, and those that
produce full-length proteins whose structural
properties determine whether mutations are toler-
ated. We believe n captures the idea of structural
plasticity more accurately.
Because optimal mutation rates depend on n, we

can suggest measures that influence n and that
therefore may be used to manipulate the optimal
mutation rate. All else being equal, proteins with
higher thermodynamic stability (free energy of
unfolding) have a higher n,5 and tolerate more
destabilizing substitutions, suggesting that more
stable variants of a protein represent more promis-
ing departure points for mutagenesis. If longer
proteins are more tolerant of substitutions, as seems
plausible, then longer genes will tend to have
higher optimal mutation rates. Codon usage may
influence n indirectly, through protein expression;
in cases where high protein expression is required
for the relevant function, replacement of rare
codons with common synonyms may allow higher
mutation rates. When the crystal structure of a
protein is available, n can be estimated computa-
tionally.5 We note that the exponential decline in
fraction functional holds when many mutations are
introduced, as in the present work, but may not
always hold for small numbers of mutations.5

The intrinsic functional tolerance of a protein to
substitutions is only one of many ways in which
genetic mutations may affect the fraction of active
clones in a library. Biologically relevant or screen-
able activity may depend on the action of many
molecules in an organism, so mutations that hinder
expression (e.g. through introduction of non-
preferred codons, or in rarer cases by altering
mRNA secondary structure) may decrease the
fraction of clones scored as active. Disruption of
signal sequences may result in improper targeting
to cellular locations such as the periplasm or cell
membrane. Mutations may destabilize the protein,
hindering its folding or exposing it to proteolysis or
irreversible misfolding without actually destroying
the function of the natively folded molecule. The
dominant effect of most random mutagenesis is
changes in the primary sequence of a target protein,
most of which disrupt native function, and our
simple treatment appears to work well under these
circumstances.
Our results also illuminate potentially serious

methodological flaws in previous studies. For
example, the accuracy in measuring average library
mutation rate by nucleotide sequencing depends on
the variance of the mutational distribution, which at
high mutation rates is far broader than that of the
Poisson distribution previously assumed. The
expected standard error of measurement on a
library with hmnti average mutations assessed by
sequencing Nseq clones is:
sm=
ffiffiffiffiffiffiffiffiffi
Nseq

q
Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hmntið1C hmnti=nlÞ=Nseq

q
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Zaccolo and Gherardi,9 for example, report four
libraries averaging hmntiZ8.2, 19.7, 21.3 and 27.2
mutations per coding region of a 1088 base-pair
gene constructed using two, five, ten and 20 thermal
cycles with hmnti measured by sequencing at least
2500 base-pairs, effectively NseqZ2.5. Even if the
true value of hmnti is as measured and perfect PCR
efficiency assumed, these measurements have an
expected 1s standard error of 4.3, 6.5, 5.4 and 5.3
mutations per gene, respectively, calling into
question the actual levels of hypermutagenesis
achieved in these experiments.

The analysis presented here has important
consequences for understanding the natural and
directed evolution of proteins. Importantly, we have
provided a thorough analysis of an apparent
manifestation of mutational epistasis. Two issues
are often confused: whether mutations interact
epistatically on average in individual folded
sequences, and whether mutations interact epi-
statically on average in a library or ensemble that
contains both folded and unfolded sequences.
Ensemble epistasis is the only measure of interest
in studies of the evolutionary persistence of sexual
recombination,12 and of primary interest in decid-
ing which regions of sequence space should be
targeted for efficient directed evolution.

If ensemble epistasis existed, as implied by earlier
interpretations of the less-than-exponential decline
in retention of function with mutational distance
discussed here, then individual epistasis would be
found on average. Importantly, the reverse is not
true. Though folded or improved proteins may
display cooperative effects (mutations that are
better together than individually), many polypep-
tides in a random library may carry mutations that
are more deleterious together than apart. However,
the latter are unlikely to be found by investigators,
because such mutants are disproportionately
likely to fail to fold, and little if any attention is
given to the vast numbers of unfolded proteins
in mutant libraries. Confusion arising from the
asymmetry between types of epistasis (ensemble
epistasis implies individual epistasis, but indi-
vidual epistasis does not imply ensemble epistasis)
may have inspired prior claims that high
mutation rates can be used to access reservoirs
of cooperative mutations while only a “small
proportion” of clones will be lost to disruptive
mutations.9

As a result of our analysis, several data sets
probing high mutation rates can now be seen,
despite appearances to the contrary, to provide no
evidence for ensemble epistasis, of particular
biological interest given the recent discoveries of
multiple native error-prone polymerases in bacteria
and higher organisms.23 Meanwhile, recent work
providing an explanation for why the fraction of
mutant proteins retaining function will decline
exponentially suggests that ensemble epistasis is
unlikely.5 We cannot rule out the existence of
epistasis; our analysis merely points out one way
in which a mutation process can produce results
which give the appearance of epistasis when there
is none.

Exploration of distant regions of sequence space
by random mutation alone appears highly ineffi-
cient, reinforcing the role of other search processes
such as homologous recombination in creating
sequence diversity.24,25 High-mutation-rate EP-
PCR, however, can be used to overcome the
“uniqueness sink” that occurs at low mutation
rates when using selection or high-throughput
screening to assay large numbers of clones. Finally,
optimal mutation rates cannot be decoupled from
the physical process of mutation, making them
dependent on the particular organism or protocol
under consideration. There can be no “optimal
mutational load for protein engineering,” as has
been suggested,22 without specification of the
engineering methodology.
Materials and Methods

Library construction, sequencing and functional
assay

We constructed two libraries, A and B, from EP-PCR
reactions as described.19 Identical mutagenesis conditions
were used for both libraries but produced different
mutation levels in each library. In particular, 2.50 mM
MgCl2, 0.5 mM MnCl2, 0.35 mM dATP, 0.40 mM dCTP,
0.20 dGTP, and 1.35 mM dCTP were used along with Taq
DNA polymerase. The PCR reaction was continued for 30
cycles rather than 16. All other parameters were set and
subsequent ligation, transformation and fluorescence-
activated cell sorting functional analysis procedures
performed as described.3

Statistical characterization of mutational distributions

To characterize the sequencing results and relate them
to two theoretical distributions (the Poisson distribution:

Prðm; hmntiÞZ
hmnti

meKhmnti

m!

and the PCR distribution, equation (1)), we used the
likelihood ratio test, which compares the probabilities of
observing a particular mutational sample under com-
peting distributions. A mutational sample, obtained by
sequencing, consists of N sequences iZ1ZN having mi

mutations. Given a theoretical mutational distribution
Pr(m) which gives the probability of randomly choosing a
sequence having m mutations, the likelihood of a sample
is LZ

QN
iZ1 PrðmiÞ. The likelihood ratio test evaluates the

statistic LRZ2½lnðLPoisson=LPCRÞ�which has approximately
a c2 distribution. Significance values (P values) can be
computed from the likelihood ratio statistic, the c2

distribution and a number of degrees of freedom, which
in this case is 2, corresponding to the two additional
parameters in the PCR distribution, the number of
thermal cycles n and the replication efficiency l.

Simulation

To simulate the EP-PCR process, two approaches were
taken. First, we exhaustively simulated the EP-PCR
process using genes encoding simplified model proteins
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(compact lattice model, 25 residues consisting of any of 20
amino acids) which were then folded and assayed for
retention of wild-type structure. Details of this simulation
and results are presented in Supplementary Data.
We found that a vastly simpler simulation produced

nearly identical results (see Supplementary Data Figure
S2) and used this simulation to generate Figure 3. In this
simplified simulation, the scFv gene was mutated to
produce NZ50,000 sequences at each hmnti according to
the observed mutation frequencies (Table 2, Library A)
and the PCR distribution, equation (1), with parameters
as indicated in the Figure legend. Each mutated gene was
translated into a protein sequence according to the
universal genetic code. Truncated proteins, either from
stop codons or frameshifts, were discarded. Whether a
full-length sequence was functional or not was estimated
by counting the number of amino acid substitutions
relative to wild-type and designating the protein
functional with probability PrðfjmaaÞZnmaa. All full-length
protein sequences were inserted in a set that retained only
unique sequences. Numbers and fractions of unique,
functional and jointly unique and functional sequences
were then tabulated.
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