Enzyme Promiscuity: A Mechanistic and Evolutionary Perspective

Olga Khersonsky and Dan S. Tawfik

Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel; email: tawfik@weizmann.ac.il

Key Words
enzyme mechanism, protein evolution, superfamilies

Abstract
Many, if not most, enzymes can promiscuously catalyze reactions, or act on substrates, other than those for which they evolved. Here, we discuss the structural, mechanistic, and evolutionary implications of this manifestation of infidelity of molecular recognition. We define promiscuity and related phenomena and also address their generality and physiological implications. We discuss the mechanistic enzymology of promiscuity—how enzymes, which generally exert exquisite specificity, catalyze other, and sometimes barely related, reactions. Finally, we address the hypothesis that promiscuous enzymatic activities serve as evolutionary starting points and highlight the unique evolutionary features of promiscuous enzyme functions.
INTRODUCTION

Enzymes are traditionally referred to as remarkably specific catalysts. Yet the notion that many enzymes are capable of catalyzing other reactions and/or transforming other substrates, in addition to the ones for which they are physiologically specialized, or evolved, is definitely not new. Early examples of enzyme promiscuity include pyruvate decarboxylase (1), carbonic anhydrase (2), pepsin (3), chymotrypsin (4), and L-asparaginase (5). Nonetheless, the notion of “one enzyme—one substrate—one reaction” dominated, and still dominates the textbooks, and until recently, the wider implications of the “darker” side of enzyme promiscuity were largely ignored.

The idea of nature as an opportunistic modifier of preexisting suboptimal functions is also relatively old and has been formulated by Jacob in his classical note “Evolution and Tinkering” (6). The first direct connection between promiscuity and protein evolution was made, to our knowledge, in 1976 by Jensen (7). Jensen boldly forwarded the hypothesis that, unlike modern enzymes that tend to specialize in one substrate and reaction, the primordial, ancient enzymes possessed very broad specificities. Thus, relatively few rudimentary enzymes acted on multiple substrates to afford a wider range of metabolic capabilities. Divergence of specialized enzymes, via duplication, mutation, and selection, led to the current diversity of enzymes and to increased metabolic efficiency.

During the past decade, protein, and especially enzyme, promiscuity received considerable attention. Reviews by O’Brien & Herschlag (8) and Copley (9) were the first to highlight the potential mechanistic and evolutionary implications of promiscuity from an enzymologist’s point of view. More recent reviews focused on practical implications of promiscuity (1, 10–12), on promiscuity and divergence in specific enzyme families (13–16), on mechanistic aspects of promiscuity (1, 17), and on promiscuity in the context of protein evolution and design (17, 18).

Here, we focus on the structural and mechanistic aspects of promiscuity as well as its role in the evolution of new functions. New enzymes have constantly emerged throughout the natural history of this planet. Enzymes that
enzymes, such as glutathione

ity for which an enzyme evolved and that are
describe enzyme activities other than the activ-
several others (8, 9, 32), use promiscuity to only
The term enzyme promiscuity (8) is loosely ap-
PROMISCUITY
DEFINING AND QUANTIFYING
PROMISCUITY
The term enzyme promiscuity (8) is loosely ap-
substrates, are not promiscuous; they are mul-
typing differences in the Enzyme
Enzyme Promiscuity: coincidental catalysis of reactions other than the reaction(s) for which an enzyme evolved
Multispecific or broad-specificity enzymes: enzymes performing the same reaction on a whole range of substrates, usually with similar efficiency
Substrate ambiguity: the activity of enzymes with substrates whose structure resembles the native substrate
degradation of synthetic chemicals introduced to the biosystem during the last decades (19–24), en-
zymes associated with drug resistance (25–28),
and enzymes in plant secondary metabolism
(29–31) provide vivid examples of how fast and
efficient the evolution of new enzymatic
functions can be. Indeed, extensive research
since Jensen’s article provided ample evidence
for the notion that promiscuity is a key factor in
the evolution of new protein functions. Here,
we attempt to summarize this accumulating
knowledge and point out some open questions
in this emerging field of research.

DEFINING AND QUANTIFYING
PROMISCUITY
The term enzyme promiscuity (8) is loosely ap-
plied and is used to describe a wide range of
fundamentally different phenomena. We, and
several others (8, 9, 32), use promiscuity to only
describe enzyme activities other than the activ-
ity for which an enzyme evolved and that are
not part of the organism’s physiology. Thus,
enzymes, such as glutathione S-transferases
(GSTs) and cytochrome P450s (33), which a
priori evolved to transform a whole range of
substrates, are not promiscuous; they are mul-
tispecific or broad-specificity enzymes.

Degree of promiscuity refers to the level of
specificity breach, namely, how diverse are the
promiscuous activities of a given enzyme (34),
and how different are the native and promis-
cuous functions. The degree of promiscuity can be
assessed by examining the type of bonds that are
being formed or broken and by differences in
the mechanism between the native and promis-
cuous reactions (10). An “index of promiscuity,”
which computes the degree of variability
between different substrates, has also been pro-
posed (35). However, this method assumes that
the same chemical transformation occurs on
all substrates. As such, it is more suitable for
the analysis of multispecific enzymes such as
GSTs (as originally demonstrated), rather than
promiscuity. We proposed a simple, relatively
objective, way of assessing the degree of promis-
cuity by comparing differences in the Enzyme
Commission (EC) numbers (33). In enzymes
exhibiting multispecificity, or substrate ambi-
guity, EC numbers for the various substrates
should be the same, or differ only by the fourth
digit (which generally distinguishes between
enzymes of the same class). Catalytic promis-
cuity generally correlates with cases in which
the EC numbers of the various substrates and
reactions catalyzed by the same enzyme differ
in the second, or the third, digits (which re-
fer to different classes of substrates) or even by
the first digit (which indicates a different reac-
tion category). (For examples see Supplemental
Table 1. Follow the Supplemental Material
link from the Annual Reviews home page at
http://www.annualreviews.org.)

Magnitude of promiscuity refers to the ki-
netic parameters for the promiscuous activity
relative to the native one. Whereas most en-
zymes exhibit kcat/KM values in the order of
105–108 M−1s−1 for their native substrates, the
magnitude of promiscuous activities varies over
more orders of magnitude, in absolute terms
and also relative to the native activity. Catalytic
proficiency (kcat/KM/kuncat) and rate acceleration
(kcat/kuncat) can provide a measure of the magni-
tude of catalytic effects exerted on native ver-
sus promiscuous substrates. In many cases,
although the kcat/KM values for the promiscuous
substrates are very low, and hence might have
little physiological relevance, the rate accelera-
tions and catalytic efficiencies are impressively
high (34, 36–38).

PROMISCUITY: RULE
OR EXCEPTION?
Numerous examples for enzyme promiscuity
are currently known, but these are ana-
dot and hardly provide an indication for the
scale of this phenomenon. Systematic, high-
throughput screens for promiscuous enzymatic
activities are not a feasible option at present;
no single detection method is available that can
detect the whole range of different substrates
and reactions. In contrast, high-throughput
screens for binding cross-reactivities are rel-
atively straightforward. These reveal a clear

473
www.annualreviews.org • Enzyme Promiscuity
Native function(s): physiologically relevant chemical transformation(s) and substrate(s) for which an enzyme evolved and is maintained under selection

Secondary function: an additional function in secondary metabolism or signaling. Secondary functions are also defined as native

Primary function: a well-defined function, often in central metabolism, typically shared by all orthologs

trend whereby the number of identified cross-reaction products increase exponentially with the number of tested ligands (39–41). Several theoretical models account for these observations (42–44; see also 45, 46). Future screens, using large diversities of substrates and reactions performed with enzymes, are likely to reveal that essentially every enzyme exhibits a range of promiscuous functions.

Despite the absence of systematic data, outlined below are several arguments in favor of the notion that promiscuity is a wide phenomenon and thus should be regarded as a rule, rather than an exception.

Specificity Is Context Dependent

High specificity can bear a high cost in substrate-binding energies, thereby resulting in higher activation energies and lower turnover rates (k_{cat}) for the cognate substrate (47) (for an alternative mode whereby noncognate substrates exhibit low k_{cat} values due to poor positioning relative to the active site’s catalytic residues, see Kinetic Parameters for Native versus Promiscuous Functions, below). Even the most specific enzymes, e.g., enzymes involved in DNA or protein synthesis, exhibit measurable substrate infidelities, often at surprisingly high rates. High fidelity is often achieved via proofreading, or proofediting, mechanisms that reverse the process and redo it (47). For example, the selectivity of aminoacyl-tRNA synthetases is under tight selection—having the wrong amino acid loaded onto a given tRNA yields a mutated protein. Because of the close similarity of certain amino acids, proofediting mechanisms have evolved whereby formation of a noncognate aminoacyl-tRNA leads to its rapid hydrolysis and resynthesis of the aminoacyl-tRNA at the cost of ATP (48). Similarly, the proofreading domain of polymerases is an exonuclease that can digest parts of the extended strand.

Specificity is shaped by natural selection. Promiscuous activities that are harmful were selected against. The adenylation domain $TycA$ is highly selective for its cognate amino acid L-phenylalanine, primarily with respect to naturally occurring amino acids (e.g., L-tyrosine exhibits ~800-fold lower k_{cat}/K_M). However, an artificial substrate D-phenylalanine, to which the enzyme has probably never been exposed, is accommodated by $TycA$ with k_{cat}/K_M only twofold lower than that of L-phenylalanine (49).

Many enzymes perform secondary tasks (50, 51) that are likely to have stemmed from their promiscuity. Examples include enzymes that have been under intense selection for high specificity, such as aminoacyl-tRNA synthetases. Lysyl-tRNA-synthetase, for example, mediates the synthesis of the signaling molecule Ap4A (two adenosines linked via four phosphates) (52, 53), and so do most other tRNA synthetases (54). This side reaction occurs within the same active site. In the absence of tRNA, the aminoacyl-AMP intermediate reacts with a second ATP molecule to generate the free amino acid and Ap4A. Certain aminoacyl-tRNA synthetases bind DNA or mRNA and thus regulate transcription, splicing, and translation, or act as cofactors in RNA trafficking (51). It is likely that these oft-called secondary functions were recruited well after the primary function had emerged. Once recruited, they remained under selection and therefore became an additional native function of the enzyme.

Regulation and Masking of Promiscuity

Few of the promiscuous activities found in vitro bear a physiological or evolutionary meaning. Even those that might not be manifested in vivo (this is, by definition, what promiscuous activities are). A primary factor to consider is regulation, which prevents many of the undesirable outcomes of promiscuity. Of the entire enzyme diversity available to organisms, only a small fraction is accessible and active at a given time and cellular location. Regulation at the level of expression prevents the spending of unnecessary resources (51, 55), but the fitness costs
associated with unnecessary transcription and translation are relatively low (56). However, regulation regimes are also the key in controlling enzyme activity, especially with enzymes whose specificity is broad. For example, *Escherichia coli* has 23 different haloacid dehalogenase (HAD)-like hydrolases. Most of these are phosphatases exhibiting very broad substrate specificity (57, 58), but these operate under different regulation, and specificity is achieved via regulation and not by restricting enzyme specificity (58).

Regulation occurs also at the protein level, such as allosteric regulation that prevents the wasteful conversion of costly metabolites. As expected, this regulation is mostly product controlled. But in some cases, the substrate is an allosteric regulator of its own enzyme. Why would such a regulatory mechanism evolve? In the absence of its substrate, an enzyme is supposed to remain silent. Preventing active sites from promiscuously reacting with undesirable substrates could be one of the driving forces for the evolution of substrate-dependent allosteric regulation.

Promiscuity within Living Cells

Despite the action of natural selection to increase enzyme selectivity by various means, ranging from shaping the active site itself to regulation of enzyme expression and activity, numerous cross-reactions and breaches of specificity occur, not just in vitro, but also within living cells. Such cross-reactivities are often unraveled by the analysis of auxotrophic knockout strains that lack a crucial enzyme. Such deficiencies are often complemented by other enzymes, or even other enzyme pathways, sometimes in an unexpected manner. For example, knockouts of the *phn* operon in *E. coli* that utilizes phosphate (HPO$_4^{2-}$) led to the identification of promiscuous phosphate-dependent hydrogenase activity in alkaline phosphatase (see Mechanistic Aspects of Promiscuity, below) (59). Glutamyl phosphate reductase (*PrA*) exhibits low promiscuous activity with N-acetylglutamyl phosphate, the substrate for *ArgC* (N-acetylglutamyl phosphate reductase). Following a single mutation in the enzyme’s active site, and changes in regulation, *PrA* could complement the *ArgC* knockout from a single-copy plasmid (60).

The level of cross-reactivity between different metabolic pathways was also indicated by an in silico experiment that attempted to dock 125 common metabolites into the active sites of 120 key metabolic enzymes. Numerous potential cross-reactions were found among these 15,000 potential pairs. Although docking has obvious limitations, this study further highlights the potential for promiscuity (12, 61). Complementation of *E. coli* knockout strains by selection from a library of *E. coli*’s own genes under overexpression from a multiple-copy plasmid revealed a similar picture (32). The deleted gene and its suppressor were, in most cases, unrelated. Complementation was achieved through the promiscuous action of other enzymes, through increased transport (and not necessarily of the deficient metabolite), and, most often, by an alternative metabolic pathway. Thus, promiscuity is not necessarily limited to the single enzyme level, but often, whole pathways act promiscuously, namely, outside their ordinary functional role. Other examples of metabolic plasticity, or “underground metabolism,” are reviewed in References 7, 13, and 62.

The “Flexible Metabolome”

The above observations led to new hypotheses that suggest that genetic and metabolic pathways are inherently ambiguous and stochastic. By these hypotheses, the well-defined linear pathways described in textbooks are cross wired in a variety of unexpected ways. Evolution may capitalize on these cross-wirings, as a way of adaptive plasticity (i.e., with no genetic changes to begin with), to generate new metabolic capabilities (63). Phenomena similar to underground metabolism and adaptive plasticity were also observed in genetic analyses, wherein altered phenotypes turned out to be correlated with changes in many different genes, including genes from unrelated pathways. As is the case
with enzymes and metabolic pathways, genome flexibility is an inevitable outcome of limited specificity, or promiscuity, of gene action and of intergenic interactions (64, 65). Thus, it appears that, beyond the well-studied, linear pathways, there exist flexible genomes (64), as well as flexible proteomes and flexible metabolomes, whose contribution to evolutionary adaptation is still understudied.

MECHANISTIC ASPECTS OF PROMISCUITY

How does the very same active site and catalytic machinery show exquisite specificity with respect to the native substrate but still promiscuously catalyze other, often completely unrelated, reactions? The answer to this question is complex, and different scenarios, mechanisms, and other aspects of the specificity-promiscuity dichotomy are outlined below.

Specificity and Promiscuity Coincide within the Same Active Site

Conformational diversity. The role of structural plasticity in facilitating enzyme action, promiscuity, and evolution is discussed in several reviews (67–69). In many cases, promiscuity is linked to diverse conformations, whereby the native and the promiscuous functions are mediated by different active-site configurations (Figure 1). For example, isopropylmalate isomerase is an enzyme with dual-substrate specificity, where a loop structure depends on the substrate present (70). In sulfotransferase SULT1A1, conformational changes enable the same enzyme to accommodate a range of different substrates (66), as is the case with glutathione-S-transferases GSTA1-1 and GSTA4-4 (71) and with certain P450s (72). And, in β-lactamase, an expanded spectrum of antibiotic substrates is accommodated through increased flexibility and altered dynamics (73, 74).

Accommodating alternative substrates. In many cases, promiscuous activities share the same active-site configuration and main active-site features with the native activity. For example, guanidine-transferring enzymes utilize the same catalytic triad in their promiscuous action on various derivatives of arginine (75). In this case of substrate ambiguity, the active-site residues that bind the Cα-carboxyl and the guanidino-NH2 of different substrates are different. Another case where the network of hydrogen bonds is the main feature that differentiates the native reaction from the promiscuous one is D-2-keto-3-deoxygluconate aldolase (Figure 2) (78).
Figure 2
Schematic summary of the different interactions made in the active site of D-2-keto-3-deoxy-gluconate aldolase (KDGA) from Sulfolobus solfataricus (adapted from Reference 78). This enzyme transforms both D-2-keto-3-deoxy-gluconate (D-KDG) and D-2-keto-3-deoxy-galactonate (D-KDGal) with similar rates (176). The mechanism with both substrates involves Schiff base formation by Lys155 and subsequent hydration and cleavage. The differences between the gluconate and galactonate substrates are in the hydrogen bonds formed with KDGA’s active site and, in particular, in the manner by which the 5′ and 6′ hydroxyl groups are bound.

Other examples include enzymes that apply nucleophilic catalysis, such as alkaline phosphatase, a highly proficient ($k_{cat}/K_m > 10^7 \text{ M}^{-1} \text{s}^{-1}$) phosphate monoesterase that promiscuously hydrolyzes phosphodiesters, phosphoamides, and sulfate esters (36, 38, 79), as well as phosphite (while reducing water to release hydrogen) (Figure 3a) (59). The catalytic mechanism is presumed to be similar for all these reactions and involves nucleophilic attack by Ser102 and stabilization of the negatively charged intermediate by the active site Zn$^{2+}$ ions and Arg166 (Figure 3b) (38, 59). Comparison between the activities revealed that, although these substrates all bind in a similar mode, the interactions with both Zn$^{2+}$ ions and Arg166 are much more favorable for the native phosphate-monoester substrates than for other promiscuous substrates (36, 38). This difference accounts for the orders-of-magnitude higher rates and catalytic efficiencies of the native substrates versus the promiscuous ones.

The very same active site can therefore offer several different modes of interactions, and some of these might be utilized by promiscuous substrates. It should be noted, however, that most of the above describes cases analyzed by kinetics and site-directed mutagenesis. Because very few structures of the enzyme-substrate or enzyme-transition state analog complexes exist for both the native and promiscuous substrates, subtle changes of the active site’s conformation cannot be excluded.

Different protonation states. The same catalytic residue can act in a different protonation state in the native compared to the promiscuous function. In the tautomerase superfamily, various enzymes share the catalytic Pro residue at the enzyme’s amino terminus, but the mechanism of catalysis depends on its pK$_a$. In the 4-oxalocrotonate tautomerase (4-OT) the pK$_a$ of Pro1 is ~6.4, and it acts as a general base. In trans-3-chloroacrylic acid...
a Phosphate-monoester hydrolysis

\[
\begin{align*}
\text{H}^+ & \cdot \text{RO} - \text{O-Ser102} \rightarrow \text{ROH} + \text{H}_2\text{O} \\
\text{H}^+ & \cdot \text{PO}_\text{Ser102} \rightarrow \text{PO}_\text{Ser102} + \text{H}_2\text{O}
\end{align*}
\]

Phosphite hydrolysis

\[
\begin{align*}
\text{H}^+ & \cdot \text{PO}_\text{Ser102} \rightarrow \text{PO}_\text{Ser102} + \text{H}_2\text{O}
\end{align*}
\]

b

![Active-site arrangement of alkaline phosphatase with a bound transition state model](adapted from Reference 36).

Figure 3

(a) The native monoester phosphatase activity and the promiscuous phosphite hydrolysis reactions catalyzed by alkaline phosphatase (adapted from Reference 59). *(b)* The active-site arrangement of alkaline phosphatase with a bound transition state model (adapted from Reference 36).

dehalogenase (CaaD), which catalyzes the hydrolytic halogenation of haloacrylates, Pro1 is protonated (pKa ~9.2) and serves as a general acid. However, in 4-OT only a small fraction of Pro1 is present in the protonated state, it exhibits very weak promiscuous general acid catalysis of the hydratase activity. Because another family member, malonate semialdehyde decarboxylase (MSAD), exhibits a substantial promiscuous hydratase activity, primarily because Pro1 is protonated and serves as a general acid in the mechanism of the enzyme’s native activity.

Different subsites within the same active site. In several cases, although both the original and promiscuous activities reside within the same active site and rely on its major feature (e.g., an oxyanion hole), other key parts of the catalytic machinery differ. One example is serum paraoxonase (PON1), a mammalian lactonase with promiscuous esterase and...
phosphotriesterase (PTE) activities (Figure 4a) (84). The coordination of the phosphoryl/carbonyl oxygen to the active-site calcium is a feature shared by all the activities. However, whereas the hydrolysis of lactones and esters is mediated by a His115-His134 dyad, the promiscuous phosphotriesterase activity is mediated by another set of residues (84, 85), possibly via a nucleophilic attack of Asp269 (86).

An analogous example is Candida antarctica lipase B (CAL-B) whose native activity (lipids hydrolysis) is mediated by a Ser105-His224-Asp187 catalytic triad. Using its oxyanion hole, CAL-B also catalyzes various carbon-carbon bond formation reactions, such as Michael additions and aldol condensations (87–89). However, in these reactions, the nucleophilic serine takes no role, and acid-base transfer is presumably mediated by His224 in conjunction with Asp187 (Figure 4b).

Promiscuity via alternative cofactors and amino acids. In a particular case of cofactor ambiguity, changes in enzyme specificity can also be induced by metal substitutions. Following work by Kaiser & Lawrence (90), the introduction of copper ions induced promiscuous oxidase activities in several hydrolytic enzymes (91, 92). In carbonic anhydrase, substitution of the native Zn$^{2+}$ by Mn$^{2+}$

Figure 4

Different subsites within the same active site.

(a) The main active-site feature of the serum paraoxonase (PON1) is the catalytic calcium ion, which lies at the bottom of a deep and hydrophobic active site and is thought to act as the “oxyanion hole” of PONs. The native function, hydrolysis of lactones, is mediated by a His115-His134 dyad, which deprotonates a water molecule to generate the attacking hydroxide. Although the same dyad appears to mediate the promiscuous arylesterase activity of PON1, the promiscuous phosphotriesterase activity (shown here for paraoxon as substrate) is independent and is mediated by other residues that act as base or nucleophile (84, 174). Indeed, mutations of both His residues diminish the lactonase activity but may increase the promiscuous phosphotriesterase activity by up to 300-fold with certain organophosphate substrates (85, 175). (b) A similar scenario has been described for Candida antarctica lipase B (CAL-B). Its native activity (lipid hydrolysis) is mediated by the Ser105-His224-Asp187 triad, and the acyl-enzyme intermediate is stabilized by its oxyanion hole. CAL-B also catalyzes promiscuous C-C bond formation reactions. In these promiscuous activities, the oxyanion hole is also utilized for negative charge stabilization (shown here). However, the catalytic serine takes no part, and acid-base transfer is thought to be mediated by His224 in conjunction with Asp187 (87–89).
enabled the catalysis of styrene epoxidation (93), and rhodium-substituted carbonic anhydrase acts as a hydrogen-utilizing reductase (94). Similarly, incorporating selenocysteine into the active sites of subtilisin (95), glyceraldehyde-3-phosphate dehydrogenase (96), and GST (97) endowed these enzymes with novel peroxidase activities.

Water-assisted promiscuity. Although the native substrate may interact directly with active-site residues, accidental hydrogen bonds mediated by water molecules may play a role in promiscuous interactions. Water molecules can buffer opposing dipoles or charges between the substrate and active-site residues, or they can act as acid, base, or nucleophile in the catalysis of promiscuous reactions. Indeed, spatially defined active-site water molecules have catalytic powers that are comparable to amino acid residues, and localized water molecules may have played a key role in primordial enzymatic active sites (47). A study of the molecular dynamics of the *Bacillus subtilis* esterase suggested that promiscuous amide hydrolysis is mediated by a network of water-mediated hydrogen bonds that are not involved in the esterase reaction (98). Further evidence for water-mediated promiscuity awaits more structures of enzymes complexed with promiscuous substrates.

Enzyme Mechanisms Analyzed by Studying Promiscuous Functions

Enzymologists have discovered that a systematic research of the hidden skills of enzymes can provide valuable insights regarding their catalytic mechanisms. For example, the promiscuous hydrolysis of phosphonate diesters by *Tetrahymena thermophila* ribozyme provided key insights regarding the relative importance of transition state geometry versus charge (99). In another study, the promiscuous chorismate mutase activity of PchB was used to derive mechanistic insights into its native activity (isochorismate pyruvate lyase) (100).

Kinetic Parameters for Native versus Promiscuous Functions

Differences between the efficiency of promiscuous and native activities can be manifested in differences in either k_{cat} or K_M. Although it is expected that promiscuous substrates that bind weakly will exhibit high K_M values, many promiscuous substrates are characterized by low k_{cat} values. Thus, specificity may result not only from substrate binding interactions per se, but also from appropriate positioning relative to the catalytic machinery. For example, analysis of substrates of PON1, the primary function of which is lipophilic lactonase, indicated that all promiscuous aryl esters and phosphotriester substrates exhibit K_M values in the mM range (0.8–5 mM), and the differences in reactivity are primarily due to k_{cat} values that vary by >1000-fold (101). For the promiscuous substrates, substrate binding is driven primarily by nonspecific hydrophobic forces within the deep and hydrophobic active site of PON1. However, promiscuous substrates are inadequately positioned relative to the catalytic machinery and therefore exhibit low k_{cat} values. Interestingly, for the lactones that comprise the native substrate of this enzyme, K_M values vary by ~ 200-fold (from about 0.1 up to 20 mM), whereas the variations in k_{cat} values are an order of magnitude lower ($\sim 10–200 \text{ s}^{-1}$). Indeed, binding of the native substrate is typically mediated by enthalpy-driven interactions, such as hydrogen bonds, whereas for the promiscuous substrates, hydrophobic and other entropy-driven interactions play a key role (12, 102).

PROMISCUITY AND DIVERGENCE OF ENZYME SUPERFAMILIES

An enzyme superfamily combines dozens to thousands of enzymes that, although distant in sequence and catalyzing different chemical transformations of many different substrates, share the same fold and a common catalytic strategy (e.g., abstraction of a proton from a position alpha to a carboxylate, and stabilization of
Divergence of a generalist progenitor enzyme to a family of specialist enzymes. (left) Jensen’s hypothesis (7) surmises that, in nature, an ancestor protein displaying a low level of a range of activities (denoted as \(a, b, c, d\)) has been subjected to selection pressures for those activities, thus duplicating and diverging into a family of potent and highly specialized enzymes of the kind seen today (denoted \(A, B, etc.\)). In the course of divergence, new activities that were not present in the progenitor may also emerge (denoted as \(E\) and \(F\)). Today’s specialists may still retain some of the functions of the common ancestor (denoted in lower case letters) as low levels of promiscuous activities. Indeed, several reports indicate a low level of shared activities within a family and, in particular, that the native activity of one member is the promiscuous activity of another, and vice versa (Table 1). (right) Additional support to the above model comes from the results of many directed evolution experiments. Direct switches of specificity, e.g., from \(B\) to \(D\) (blue arrow) are rare and are typically seen following a parallel selection for an increase in the target activity and elimination of the original one. Upon mutation and selection for an increase of a promiscuous activity (green arrow), the resulting variants usually show significant increases in the target activity and a smaller decrease in the original one, thus yielding, in effect, a generalist intermediate exhibiting both \(d\) and \(b\) at relatively high levels (the weak negative trade-off line in Figure 6). Such intermediates are often observed in the lab; some even gain other activities, for which they were never selected (denoted \(a, c\)), and may therefore resemble the progenitor of this enzyme family or node intermediates along past routes of its divergence. Adapted from Reference 17.

The resulting enolate intermediate, in the enolase superfamily (14). Analysis of enzyme families and superfamilies provides ample evidence for the role of promiscuity in the evolution of new functions. Specifically, the identification of promiscuous activities, or cross-reactivities, between different members of the same enzyme family or superfamily and the ability to evolve these promiscuous activities in the laboratory provide important hints regarding evolutionary, structural, and mechanistic relationships within enzyme superfamilies (Figure 5). Examples of the promiscuous catalytic activities within enzyme families and superfamilies are listed in Table 1. Conclusions supported by these data are summarized below:

1. The primary, or native, function of one family member is often identified as a promiscuous activity in other family members (Table 1, entries 2 and 5–9). This overlap may reflect the common catalytic strategy that underlines these families and superfamilies as well as a common evolutionary origin (Figure 5). It can therefore guide the identification of the native function of new superfamily members by virtue of its similarity to the promiscuous activity of related family members. This principle was demonstrated in an attempt to trace the origins of a bacterial phosphotriesterase (PTE from \(Pseudomonas diminuta\)), an enzyme thought to have evolved for the degradation of paraoxon, an insecticide introduced in the twentieth century. PTE possesses a promiscuous lactonase
<table>
<thead>
<tr>
<th>Entry number</th>
<th>Family/superfamily</th>
<th>Enzymes</th>
<th>Native activity (substrate, k_{cat}/K_M in M$^{-1}$s$^{-1}$)</th>
<th>Promiscuous activity (substrate, k_{cat}/K_M in M$^{-1}$s$^{-1}$)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mammalian paraoxonases (PONs)</td>
<td>PON1 (serum paraoxonase) PON2 PON3</td>
<td>Lipo-lactonase (γ-dodecanoic lactone, 1.2×10^5)</td>
<td>PON1: aryl esterase (phenyl acetate, $\sim 6 \times 10^5$) Phosphotriesterase (paraaxon, 6×10^5) PON2: barely detectable aryl esterase; no phosphotriesterase PON3: low aryl esterase; barely detectable phosphotriesterase</td>
<td>101, 109</td>
</tr>
<tr>
<td>2</td>
<td>Tautomerase superfamily</td>
<td>Malonate semialdehyde decarboxylase (MSAD)</td>
<td>Decarboxylation (malonate semialdehyde, 2.2×10^5)</td>
<td>Hydration (2-oxo-3-pentynoate, 6×10^5) 4-oxalocrotonate tautomerase (4-OT) Isomerization (2-oxo-4E-hexenedioate, 2.0×10^7) Hydrolytic dehalogenation (CaaD activity) (3E-chloroacrylate, 2.6×10^{-2}) YwhB tautomerase (4-OT analog) Isomerization (2-oxo-4E-hexenedioate, 2.8×10^4) Hydrolytic dehalogenation (CaaD activity) (3E-chloroacrylate, 4.4×10^{-2}) trans-3-chloroacrylic acid dehalogenase (CaaD) Hydrolytic dehalogenation (3E-chloroacrylate, 1.2×10^3) Hydration (2-oxo-3-pentynoate, 6.4×10^3)</td>
<td>80–83</td>
</tr>
<tr>
<td>3</td>
<td>ROK family (repressor, open reading frame, kinase)</td>
<td>NanK</td>
<td>N-acetyl-D-mannosamine kinase (N-acetyl-D-mannosamine, 2.7×10^5)</td>
<td>Glucose kinase (glucose, 5.1×10^2) YafF Fructose kinase (fructose, 1.1×10^3) Glucose kinase (glucose, 2×10^2) YcfX Unknown Glucose kinase (glucose, 2.4×10^3) AlsK Allose kinase (allose, 6.5×10^4) Glucose kinase (glucose, 15)</td>
<td>123, 127</td>
</tr>
<tr>
<td>4</td>
<td>Enolase superfamily: MLE (muconate lactonizing enzyme) subgroup</td>
<td>α-succinylbenzoate synthase (OSBS)</td>
<td>Dehydration [2-succinyl-6R-hydroxy-2,4-cyclohexadiene-1R-carboxylate (SHCHC), 2.5×10^5]</td>
<td>N-acylaminosid racemase (NAAAR) (N-acytethion isomers, $4.9-5.9 \times 10^2$)</td>
<td>16, 177</td>
</tr>
<tr>
<td>Enzyme</td>
<td>Substrate/Activity</td>
<td>Kcat/Km (M⁻¹ s⁻¹)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amido hydrolase superfamily</td>
<td>Phosphotriesterase (PTE)</td>
<td>Phosphotriesterase (paraoxon, 4 × 10⁷)</td>
<td>Aryl esterase (2-naphthyl acetate, 500); lactonase (dihydrocoumarin, 6.5 × 10⁵)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phosphotriesterase homology protein</td>
<td></td>
<td>Aryl esterase (2-naphthyl acetate, 70)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dihydroorotase</td>
<td>Dihydroorotic acid hydrolysis (dihydroorotic acid, 1.2 × 10⁸)</td>
<td>Phosphotriesterase (paraoxon, 2.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AhlA; a member of the PLE family (PTE-like lactonases)</td>
<td>Lactonase (N-3-oxo-octanoyl L-homoserine lactone, 0.7 × 10⁶)</td>
<td>Phosphotriesterase (paraoxon, 0.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PPH; a member of the PLL family (PTE-like lactonases)</td>
<td>Lactonase (N-3-oxo-octanoyl L-homoserine lactone, 0.55 × 10⁵)</td>
<td>Phosphotriesterase (paraoxon, 8.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PTE-like lactonase</td>
<td>Lactonase (N-3-oxo-octanoyl L-homoserine lactone, > 10⁶)</td>
<td>Aryl esterase (naphthyl acetate, 400); phosphotriesterase (paraoxon, 4000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SsoPox</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orotidine 5′-monophosphate decarboxylase superfamily (OMPDC)</td>
<td>3′ keto L-3-gluconate 6-phosphate decarboxylase (KGPDS)</td>
<td>Decarboxylation (3′ keto L-glucoronic 6-phosphate, 7.7 × 10⁴)</td>
<td>HPS activity, aldol condensation (D-ribulose 5-phosphate and formaldehyde, 8.2 × 10⁻²)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D-arabino-hex-3-ulos 6-phosphate synthase (IPS)</td>
<td>Aldol condensation (D-ribulose 5-phosphate and formaldehyde, 1.6 × 10⁴)</td>
<td>KGPDS activity, decarboxylation (3′ keto L-glucoronic 6-phosphate, 2.3 × 10³)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N-acetyl-neuraminate lyase (NAL) family, pyruvate-dependent aldolases</td>
<td>Cleavage of N-acetyl-neuraminate (3.1 × 10³)</td>
<td>DHDPDS activity, aldol condensation (pyruvate and L-aspartate-β-semialdehyde, 20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dihydrodipicolinate synthase (DHDPS)</td>
<td>Aldol condensation (pyruvate and L-aspartate-β-semialdehyde)</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkaline phosphatase superfamily</td>
<td>Alkaline phosphatase</td>
<td>Phosphomonooesters hydrolysis (p-nitrophenol phosphate, 3.3 × 10⁷)</td>
<td>Phosphodiester hydrolysis (bis-p-nitrophenol phosphate, 5 × 10⁻²)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arylsulfatase</td>
<td>Sulfate ester hydrolysis (p-nitrophenol sulfate, 5 × 10⁻²)</td>
<td>Phosphomonoesters hydrolysis (p-nitrophenol phosphate, 790)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nucleotide pyrophosphatase-phosphodiesterase</td>
<td>Phosphodiester hydrolysis (thymidine 5′-monophosphate 4-nitrophenol ester, 1.6 × 10⁴)</td>
<td>Phosphomonoesters hydrolysis (p-nitrophenol phosphate, 1.1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Continued)
Table 1 (Continued)

<table>
<thead>
<tr>
<th>Entry number</th>
<th>Family/superfamily</th>
<th>Enzymes</th>
<th>Native activity (substrate, k_{cat}/K_M in M$^{-1}$s$^{-1}$)</th>
<th>Promiscuous activity (substrate, k_{cat}/K_M in M$^{-1}$s$^{-1}$)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Guanidino-modifying enzyme superfamily, hydrolase branch</td>
<td>Arginine deiminase (PaADI)</td>
<td>Arginine hydrolysis (arginine, 4.3×10^4)</td>
<td>PaDDAH activity, N$^\omega$N$^\omega$-dimethylarginine hydrolysis (N$^\omega$N$^\omega$-dimethylarginine, 1.8×10^3)</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amantidine deiminase (PaAgDI)</td>
<td>Amantidine hydrolysis (amantidine, 7×10^3)</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N$^\omega$N$^\omega$-dimethylarginine dimethylaminohydrolase (PaDDAH)</td>
<td>N$^\omega$N$^\omega$-dimethylarginine hydrolysis (N$^\omega$N$^\omega$-dimethylarginine, 1.8×10^3)</td>
<td>PaADI activity, arginine hydrolysis (arginine, 1.8)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Pyridoxal 5'-phosphate-dependent transferases superfamily</td>
<td>Dopa decarboxylase</td>
<td>Decarboxylation of L-aromatic amino acids into aromatic amines [3,4-dihydroxyphenylalanine (Dopa), 6.1×10^3]</td>
<td>Half-transamination of D-aromatic amino acids (5-hydroxytryptophan, 1.3) Oxidative deamination of aromatic amines (5-hydroxytryptamine, 35)</td>
<td>76, 77</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Phenylacetaldehyde synthase (PAAS)</td>
<td>Coupled decarboxylation and amine oxidation (phenylalanine, 667)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>C-C hydrolase family (branch of α/β hydrolase superfamily)</td>
<td>C-C hydrolase $MbpC$</td>
<td>C-C bond cleavage (2-hydroxy 6-keto-nona-2,4-dienoic acid, 28 units)</td>
<td>Esterase (monoethyl adipate, 0.0027 units) Thioesterase (thioethyl adipate, 0.46 units) Hydroxamic acid formation (monoethyl adipate + NH$_4$OH, 0.013 units)</td>
<td>180–182</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Haloperoxidase/esterase $ThcF$</td>
<td>Haloperoxidase (monochlorodimedon, $V_{max} = 0.45$ nmol/min)</td>
<td>Esterase (p-nitrophenyl acetate, $V_{max} = 2.58$ nmol/min)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lactonase</td>
<td>Lactonase (3,4-dihydrocoumarin, $V_{min} = 4760$ units)</td>
<td>Haloperoxidase (monochlorodimedon, $V_{max} = 199$ units)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Glutathione-S-transferase (GST) superfamily (zeta class)</td>
<td>TCHQ dehalogenase</td>
<td>Dehalogenation [tetrachlorohydroquinone (TCHQ), 3.6×10^3]</td>
<td>Isomerization of double bonds (maleylactone, 410) Dehalogenation [dichloroacetic acid (DCA), 23]</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAA isomerase</td>
<td>Isomerization of double bonds [maleylactoacetate (MAA), 1670]</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zeta GST</td>
<td>Dehalogenation [dichloroacetic acid (DCA), 8500]</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>
activity (103) that could comprise a vestige of its progenitor. Indeed, three homologs from the same superfamily (amidohydrolase) turned out to be representatives of a new group of microbial lactonases, dubbed PTE-like lactonases (PLLs) (104). These three PLLs, and some newly identified ones (105–108), proficiently hydrolyze lactones, particularly N-acyl homoserine quorum-sensing lactones, and exhibit weaker promiscuous PTE activities. PLLs share key sequence and active-site features with PTE and differ primarily by an insertion in one active-site loop (104, 107, 108). Given their function and phylogeny, PLLs emerged dozens of millions of years ago. The latent promiscuous phosphotriesterase activity of a yet-to-be-identified PLL served as the essential starting point for the evolution of PTE (104).

2. The same promiscuous activity is often shared by more than one family member (Table 1; entries 2, 3, 5, and 11).

3. The magnitude of promiscuous functions varies dramatically between family members (Table 1, entries 1, 5, and 9). For example, in the mammalian paraoxonases family, the promiscuous PTE activity is high in one paralog (PON1; $k_{cat}/K_m \sim 10^5 \text{M}^{-1}\text{s}^{-1}$) and barely detectable or undetectable in the two other paralogs. Indeed, the consistency of the lactonase function in all PON paralogs and orthologs and the haphazardness of others’ activities (phosphotriesterase and aryl esterase; Table 1, entry 1) prompted the identification of the lactonase as the native function of PONs (101, 109). This pattern is consistent with promiscuous activities not being under selection and also with the observation that promiscuous activities show large increases and decreases in response to one or a few mutations that are neutral with respect to the primary function (110, 111).

4. Laboratory evolution of one promiscuous activity often leads, indirectly, to the appearance of other promiscuous activities thus yielding “generalist” intermediates (see Evolutionary Aspects of Promiscuity, below) (112). Activities found in these generalist intermediates can be shared by other family members, as either their native or promiscuous function (103, 113).

EVOLUTIONARY ASPECTS OF PROMISCURITY

Studies of divergent evolution within enzyme families and superfamilies support the hypothesis that throughout evolution promiscuous activities served as the starting points for the divergence of new functions and that broad-specificity enzymes served as progenitors for today’s specialized enzymes (7). Evidence of this, however, is largely circumstantial and provides little insight into the mechanisms and mutational paths that underlined these processes of divergence. Describing the mutational paths is a particular challenge, because in today’s enzymes, even within the same superfamily, different functions imply sequence differences ranging from 30% up to 80%. In addition, most of these sequence changes relate to “drift” rather than change of function. Furthermore, paths leading from one function to another are most likely to be gradual (one mutation at a time) and smooth (via intermediates that are all folded and functional to some degree) (115). A detailed discussion of evolutionary mechanisms is beyond the scope of this review but we do outline several key points (for additional information see References 116 and 117).

That natural paths of divergence are most likely to be gradual is also supported by laboratory evolution, where it seems that one “should select what is already there” (118), i.e., evolving an existing weak, promiscuous function is the most feasible option. Indeed, to our knowledge, there exists only one example for the laboratory evolution of an enzymatic function in a non-catalytic fold (RNA ligase evolved from a zinc finger scaffold), and this evolution demanded the exploration of genetic diversity (>10^12 library variants) that exceeds natural diversities
(119). When no initial activity was present, incorporation of a new function demanded intensive sequence alterations, including deletion and insertion of active-site loops, even within an enzyme from the same superfamily (120). Generation of novel enzymes by computational design involved the simultaneous exchange of 8–20 amino acids (121, 122). Most notably, all the above noted cases involve starting points, and/or intermediates, that possess no activity, or even folding capability, whatsoever.

Evolvability of Promiscuous Functions: The Three Basic Postulates

Given the likelihood of gradual, smooth transitions, it is likely that natural evolution routinely takes advantage of promiscuous activities as starting points for the divergence of new enzymes. However, for promiscuity to lead the divergence of new enzyme functions, the following three basic prerequisites (discussed in detail in sections below) should be met.

1. The promiscuous activities provide an immediate physiological advantage and could thus become selected.
2. Once a promiscuous function becomes physiologically relevant, it can be improved through one, or just few, mutation(s), initially without abolishing the primary, native function of the enzyme.
3. The divergence path can be completed to give a newly specialized enzyme, for which the promiscuous activity became the native one.

Promiscuous Functions Can Provide an Immediate Advantage

Many reports indicate that weak promiscuous activities can provide an immediate selective advantage to an organism, typically following a deficiency created by a genetic manipulation in the laboratory. A systematic study conducted by Patrick et al. (32) is discussed in the section Promiscuity: Rule or Exception? In an E. coli strain deficient in glucokinase activity, several sugar kinases were found that promiscuously phosphorylate glucose (123). These promiscuous activities are notably weak (Table 1); the k_{cat}/K_M values of the promiscuous sugar kinase YaIF are in the range of $10^2 \text{M}^{-1}\text{s}^{-1}$ and are $\sim10^4$ lower than that of the primary E. coli glucokinase (Glc). Indeed, in these cases, overexpression of the promiscuous enzyme from a multiple-copy plasmid was necessary, as low catalytic efficiency can be clearly compensated by higher enzyme levels (60, 124).

Another notable example is alkaline phosphatase, whose promiscuous phosphite oxidation complemented the growth deficiency of E. coli pbn knockout strains (Figure 3a). The ability to grow on phosphite as the sole source of inorganic phosphorous occurred via the chromosomal gene of alkaline phosphatase, owing to the extremely high expression levels of the native alkaline phosphatase under phosphate starvation (59). In other cases, changes in regulation of chromosomal genes, leading to higher expression, were observed (60). In Hall’s classical experiment (125, 126) of the emergence of an alternative β-galactosidase, mutations increased a weak promiscuous β-galactosidase activity in egb (a glycosylase whose native function remains unknown). The first mutation dramatically increased the expression of egb by disabling its repressor (125). A promoter mutation in a complementing plasmid also led to ~100-fold increase in expression level of the promiscuous glucokinase YaIF (127). Gene duplication is another abundant event, leading to increased enzyme levels (117, 128–130). Thus, if and when a new function becomes necessary, the combination of a weak promiscuous activity with an increase in enzyme levels via regulatory mutations and/or gene duplication can provide the organism an immediate advantage.

Negative Trade-offs and the Evolvability of Promiscuous Functions

The second postulate regarding the evolvability of promiscuous functions is that promiscuous functions can be readily improved through one, or just a few, mutations and that mutations leading to improvements in promiscuous
functions need not induce parallel decreases in the native function. Strong negative trade-offs between the evolving trait and existing traits are a dominant factor in evolution (131). Hence, gene duplication, and a split of the original and evolving functions between the two copies, is considered a prerequisite for adaptation. The weak trade-off hypothesis allows alternative modes for emergence of new genes carrying new functions.

Evolvability, or evolutionary adaptability, is the capacity of biological systems, whether they are organisms, cells, or proteins, to evolve. Evolvability comprises two elements: plasticity and robustness (51, 132). Plasticity is the induction of novel phenotypic traits by a relatively small number of mutations. This property of promiscuous enzyme functions has been demonstrated by numerous laboratory evolution experiments. Moreover, it seems that the more promiscuous and versatile is a metabolic pathway, the more evolvable are the enzymes within it (133). However, plasticity is in conflict with the fact that most mutations are deleterious (134–136). Organisms constantly endure mutations while maintaining fitness. They therefore maintain a certain level of resistance to the effects of mutations (robustness). These two features may appear to be conflicting: Can mutations simultaneously induce no phenotypic changes and significant changes? It appears that biological systems, including proteins, exhibit both traits, namely plasticity and robustness, and the two are not necessarily mutually exclusive (51, 137). The promiscuous, accidental functions of the protein are highly plastic and can be reshaped through a few mutations. However, these mutations need not have a large effect on the protein’s native activity. Indeed, many directed evolution experiments indicate that, in contrast to the large shifts observed with the promiscuous substrates, native activities taking place in the same active site show comparatively small changes. This robustness of the native function was observed, although the only selection criterion applied in these experiments was an increase in a promiscuous activity of the target enzyme.

The weak trade-off trend was first described in three different enzymes subjected to a selection for an increase in six different promiscuous activities (138), yet it was also observed in many other laboratory experiments (Table 2). On average, mutations increased the promiscuous activity under selection by 10^{-6}-fold, whereas the original activity decreased by 0.8–42-fold. In most cases, the ratio of increase in the evolving promiscuous function versus decrease in the original function is >10. Similar trends were seen in receptors, where mutations leading to the binding of a new ligand initially broadened the spectrum of bound ligands while retaining the original one (139, 140). In bacterial transcription factors, new effector specificities were acquired during natural or laboratory evolution based on existing promiscuous effectors, and with weak trade-offs with respect to the original effector (141–143).

The different effects of mutations on the native versus the promiscuous functions are particularly striking in view of the fact that many of these mutations are found within the active site’s wall and perimeter. Structural and thermodynamic insights into the effects of these generalist mutations are needed before any definite statements can be made. Yet, it seems likely that the plasticity of the mutated residues is related to the fact that they are not part of the protein’s scaffold or of the catalytic machinery of the enzyme. They are typically located on surface loops that exhibit high conformational flexibility and comprise the substrate-binding part of the active site (66, 67, 138, 144, 145). Indeed, conformational plasticity provides a straightforward explanation for weak trade-offs at the early stages of divergence (Figure 1). For example, in α-lytic protease, structural flexibility of the substrate-binding loops (146) enabled a single amino acid substitution to increase the activity toward promiscuous substrates by a factor of 10^5, whereas the native activity was reduced by only twofold (147). In an evolved aminoacyl-tRNA synthetase, the disruption of an α-helix introduced structural plasticity to the enzyme’s active site and thus enabled it to accept a range of unnatural amino acid substrates (148).
Table 2. Examples of directed evolution of promiscuous enzyme functions and their trade-offs with the native function.

<table>
<thead>
<tr>
<th>Entry number</th>
<th>Enzyme</th>
<th>Native activity (catalytic efficiency of wild type)</th>
<th>Promiscuous activity (catalytic efficiency of wild type)</th>
<th>Mutations in selected variants for higher promiscuous activity</th>
<th>Changes in the evolved promiscuous activity (\left(\frac{k_{cat}}{K_M^{\text{variant}}} / \frac{k_{cat}}{K_M^{\text{wt}}} \right))</th>
<th>Changes in native activity (\left(\frac{k_{cat}}{K_M^{\text{variant}}} / \frac{k_{cat}}{K_M^{\text{wt}}} \right))</th>
<th>Comments</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aspartate aminotransferase (AATase)</td>
<td>Transamination of dicarboxylic substrates (\left(\frac{k_{cat}}{K_M} = 0.055 \text{ M}^{-1} \text{s}^{-1} \right)) and phenylalanine (\left(\frac{k_{cat}}{K_M} = 0.012 \text{ M}^{-1} \text{s}^{-1} \right))</td>
<td>Transamination of tyrosine (\left(\frac{k_{cat}}{K_M} = 9.1 \text{ M}^{-1} \text{s}^{-1} \right)) and phenylalanine (\left(\frac{k_{cat}}{K_M} = 0.012 \text{ M}^{-1} \text{s}^{-1} \right))</td>
<td>Pro13Thr Asn69Ser Gly72Asp Arg129Gly Thr167Ala Ala293Val Asn297Ser Asn339Ser Ala381Val Ala396Asp Ala398Val</td>
<td>130- and 270-fold higher, respectively</td>
<td>1.2-fold higher</td>
<td>This is a clear example of a generalist intermediate. The in vitro–evolved enzyme exhibits wild-type-like AATase activity and TATase activity that is $>10%$ of that of wild-type TATase</td>
<td>113</td>
</tr>
<tr>
<td>2</td>
<td>Muconate lactonizing enzyme (MLE II)</td>
<td>Cycloisomerization (\left(\frac{k_{cat}}{K_M} = 2 \times 10^4 \text{ M}^{-1} \text{s}^{-1} \right))</td>
<td>β-elimination (o-succinylbenzoate synthase, OSBS activity). No detectable promiscuous activity (nondetectable) (\left(\frac{k_{cat}}{K_M} < 1.5 \times 10^{-3} \text{ M}^{-1} \text{s}^{-1} \right))</td>
<td>Gln323Gly</td>
<td>>1.2 million-fold higher</td>
<td>15-fold lower</td>
<td>The corresponding mutation in a homologous enzyme decreased the native function far more significantly (see Reference 158)</td>
<td>183</td>
</tr>
<tr>
<td>3</td>
<td>Galactokinase (GalK)</td>
<td>Phosphorylation of D-galactose to produce α-D-galactose-1-phosphate (\left(\frac{k_{cat}}{K_M} = 860 \text{ M}^{-1} \text{s}^{-1} \right))</td>
<td>Phosphorylation of C5- or C6-substituted sugars (\left(\frac{k_{cat}}{K_M} = 138 \text{ M}^{-1} \text{s}^{-1} \right)) for 2-deoxy D-galactose, and lower for the other substrates</td>
<td>Tyr371His</td>
<td>Fivefold higher for 2-deoxy D-galactose, and higher improvements for the other target substrates</td>
<td>1.3-fold lower</td>
<td>This variant accommodates an expanded spectrum of substrates, including substrates that were not used in the screen</td>
<td>184</td>
</tr>
<tr>
<td></td>
<td>Enzyme</td>
<td>Reaction</td>
<td>Native Activity</td>
<td>Promiscuous Activity</td>
<td>Description</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------------------------------</td>
<td>---</td>
<td>--</td>
<td>----------------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>β-glucuronidase (GUS)</td>
<td>Hydrolysis of β-glucuronides ($k_{cat}/K_M = 8.3 \times 10^3 \text{ M}^{-1} \text{s}^{-1}$)</td>
<td>$k_{cat}/K_M = 2.3 \times 10^3 \text{ M}^{-1} \text{s}^{-1}$</td>
<td>16-fold higher</td>
<td>Larger increases in the evolving promiscuous galactosidase function of E. coli GUS, with smaller changes of the native function, and acquisition of specificities, which were not selected for, were also described (112)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hydrolysis of pNP-galactoside ($k_{cat}/K_M = 2.3 \times 10^3 \text{ M}^{-1} \text{s}^{-1}$)</td>
<td></td>
<td>8.3-fold lower</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Sml DNA-methyltransferase</td>
<td>Methylation of the internal cytosine of the GG(A/T)CC sequence ($k_{cat}/K_M = 2.9 \times 10^3 \text{ M}^{-1} \text{s}^{-1}$)</td>
<td>Relaxation of sequence specificity toward GG(N)CC ($k_{cat}/K_M = 2 \times 10^3 \text{ M}^{-1} \text{s}^{-1}$)</td>
<td>18.5-fold higher</td>
<td>Specificity broadening was also observed with HaeIII methyltransferase, where the native activity increased together with the acquisition of higher promiscuous activities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.5-fold lower</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Phosphotriesterase (PTE)</td>
<td>Phosphotriesterase (paraoxon, $k_{cat}/K_M = 4 \times 10^7 \text{ M}^{-1} \text{s}^{-1}$)</td>
<td>Ester hydrolysis (2-naphthyl acetate, $k_{cat}/K_M = 480 \text{ M}^{-1} \text{s}^{-1}$)</td>
<td>13-fold higher</td>
<td>≥150-fold higher activities were observed with other esters, for which there was no selection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Threefold lower</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Human carbonic anhydrase (hCAII)</td>
<td>Bicarbonate dehydrogenase ($k_{cat}/K_M = 3 \times 10^3 \text{ M}^{-1} \text{s}^{-1}$)</td>
<td>Esterase (p-nitrophenyl acetate, $k_{cat}/K_M = 2 \times 10^3 \text{ M}^{-1} \text{s}^{-1}$)</td>
<td>40-fold higher</td>
<td>Mutations in conserved regions of the active site did not affect the highly proficient native activity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Twofold lower</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Continued)
Table 2 (Continued)

<table>
<thead>
<tr>
<th>Entry number</th>
<th>Enzyme</th>
<th>Native activity (catalytic efficiency of wild type)</th>
<th>Promiscuous activity (catalytic efficiency of wild type)</th>
<th>Mutations in selected variants for higher promiscuous activity</th>
<th>Changes in the evolved promiscuous activity ((k_{cat}/K_M^{variant}/k_{cat}/K_M^{wt}))</th>
<th>Changes in native activity ((k_{cat}/K_M^{variant}/k_{cat}/K_M^{wt}))</th>
<th>Comments</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Mammalian serum paraoxonase (PON1)</td>
<td>Lipo-lactonase(^b) ((\delta)-valerolactone, (k_{cat}/K_M = 1.3 \times 10^5 \text{ M}^{-1}\text{s}^{-1}); and (\gamma)-heptanolide, (k_{cat}/K_M = 2 \times 10^3))</td>
<td>Thiolactonase ((\gamma)-butyryl thiolactone, (k_{cat}/K_M = 75 \text{ M}^{-1}\text{s}^{-1}))</td>
<td>Ile291Leu Thr332Ala</td>
<td>80-fold higher</td>
<td>No change(^b)</td>
<td>The selected mutations are located on surface loops that contain the substrate-binding pocket</td>
<td>138, 188</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Esterase (2-naphthyl octanoate, (k_{cat}/K_M = 1.5 \times 10^3 \text{ M}^{-1}\text{s}^{-1}))</td>
<td>Phe292Val Tyr293Asp</td>
<td>31-fold higher</td>
<td>No change</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Esterase (7-acetoxy coumarin, (k_{cat}/K_M = 1.2 \times 10^5 \text{ M}^{-1}\text{s}^{-1}))</td>
<td>Phe292Ser Val346Met</td>
<td>62-fold higher</td>
<td>~22-fold lower</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Phosphotriesterase (7-diethyl-phosphoro4-cyano-7-hydroxycoumarin, (k_{cat}/K_M = 9 \times 10^3 \text{ M}^{-1}\text{s}^{-1}))</td>
<td>Leu69Val Ser138Leu Ser193Pro Asn287Asp</td>
<td>155-fold higher</td>
<td>2.6-fold lower</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^b\) The activity is measured at the respective substrate by using the initial rate approach.
| | Deacetoxy cephalosporin C synthase (DAOCS) | Ring expansion of penicillin N into deacetoxy-cephalosporin C \(\left(k_{cat}/K_M = 2.2 \times 10^4 \text{ M}^{-1}\text{s}^{-1} \right) \) | Ring expansion of penicillin G into phenylacetyl-7-aminodeacetoxy cephalosporanic acid \(\left(k_{cat}/K_M = 1.8 \times 10^{-1} \text{ M}^{-1}\text{s}^{-1} \right) \) | Val275Ile Ile305Met | 32-fold higher | 1.1-fold higher | 189 |
|---|---|---|---|---|---|---|
| 9 | | | | | | |

| | β-lactamase TEM-1 | Amoxicillin hydrolysis \(\left(k_{cat}/K_M = 4.18 \times 10^7 \text{ M}^{-1}\text{s}^{-1} \right) \) | Cefotaxime hydrolysis \(\left(k_{cat}/K_M = 2.07 \times 10^3 \text{ M}^{-1}\text{s}^{-1} \right) \) | Gly238Ser | 86-fold higher | 6.2-fold lower | 27 |
| 10 | | | | | | |

| | Extended-spectrum β-lactamase CTX-M | Hydrolysis of cephalothin and cefotaxime \(\left(4 \times 10^9 - 2 \times 10^7 \right) \) | Hydrolysis of cefazidime \(\left(k_{cat}/K_M = 3.3 \times 10^9 \text{ M}^{-1}\text{s}^{-1} \right) \) | Gln87Leu His112Tyr Thr230Ile Ala231Val Asp240Gly Arg276His | 24-fold higher | 1.5-fold higher, and 1.4-fold lower for cephalothin and cefotaxime, respectively | 190 |
| 11 | | | | | | |

(Continued)
<table>
<thead>
<tr>
<th>Entry number</th>
<th>Enzyme</th>
<th>Native activity (catalytic efficiency of wild type)</th>
<th>Promiscuous activity (catalytic efficiency of wild type)</th>
<th>Mutations in selected variants for higher promiscuous activity</th>
<th>Changes in the evolved promiscuous activity (\left(\frac{k_{cat}}{K_M} \text{variant} / \frac{k_{cat}}{K_M} \text{wt} \right))</th>
<th>Changes in native activity (\left(\frac{k_{cat}}{K_M} \text{variant} / \frac{k_{cat}}{K_M} \text{wt} \right))</th>
<th>Comments</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>NotI endonuclease</td>
<td>Recognition and cleavage of GCGGCCGC DNA sequence ((5 \times 10^5 \text{ units/mg enzyme}))</td>
<td>Recognition and cleavage of altered 8-bp sequence (no detectable star activity)</td>
<td>Met91Val Glu156Gly</td>
<td>>32-fold higher than the Glu156Gly intermediate with GCTGCCGC sequence</td>
<td>23-fold lower</td>
<td>Although a considerable reduction in the rate of cleavage of the original sequence is reported, the cleavage specificity of the Met91Val/Glu156Gly mutant appears to be relaxed toward a whole set of 8-bp sequence targets, with a distinct preference for the original target</td>
<td>191</td>
</tr>
<tr>
<td>13</td>
<td>D-allose kinase (AlsK)</td>
<td>Phosphorylation of D-allose (\left(\frac{k_{cat}}{K_M} = 2.5 \times 10^5 \text{ M}^{-1} \text{s}^{-1} \right))</td>
<td>Phosphorylation of D-glucose (\left(\frac{k_{cat}}{K_M} = 3.4 \times 10^4 \text{ M}^{-1} \text{s}^{-1} \right))</td>
<td>Ala73Gly</td>
<td>62-fold higher</td>
<td>1.25-fold lower</td>
<td>145</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Phe145Leu</td>
<td>11.4-fold higher</td>
<td>1.28-fold higher</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N-acetyl D-mannosamine kinase (NanK)</td>
<td>Phosphorylation of N-acetyl D-mannosamine (\left(\frac{k_{cat}}{K_M} = 1.5 \times 10^5 \text{ M}^{-1} \text{s}^{-1} \right))</td>
<td>Phosphorylation of D-glucose (\left(\frac{k_{cat}}{K_M} = 3.4 \times 10^4 \text{ M}^{-1} \text{s}^{-1} \right))</td>
<td>Leu84Pro</td>
<td>11.8-fold higher</td>
<td>Twofold lower</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Val138Met</td>
<td>6.4-fold higher</td>
<td>1.25-fold lower</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Isomerization of $N^\prime-[(5^\prime$-phosphoribosyl)formimino]-5-aminoimidazole-4-carboxamide ribonucleotide ($k_{cat}/K_M = 1.2 \times 10^6 \text{ M}^{-1}\text{s}^{-1}$)

Isomerization of phosphoribosyl-lanthranilate: TrpF activity is below detection limits

$A_{sp127Val}$

Wild-type activity is below detection limits

$\sim 10^4$-fold lower

Almost all the original HisA activity was lost

192

*These are examples from the past few years for which kinetic parameters are available for both the promiscuous activity under selection and the original activity, which was not subjected to selection. For additional examples, see supplementary Table 8 in Reference 138. Because the above analysis aims at providing insights to the evolution of new enzyme functions in nature, the examples selected involve selection for only one parameter, an increase in a promiscuous activity, and make use of gene libraries prepared by mutagenesis in a completely random manner (point mutations or shuffling) and throughout the gene length.

Since the publication of Reference 138, it has been established that serum paraoxonase (PON1) is a lipo-lactonase, and its preferred substrates are 5- and 6-membered ring lactones, typically with aliphatic side chains (101, 109, 193). In the original article (138), data for trade-offs with the native activity were presented with both the aromatic lactone dihydrocoumarin and aliphatic lactones. However, more recent works indicated that dihydrocoumarin is not binding PON1's active site in the same mode as aliphatic lactones (84, 101).Thus, the trade-offs presented here are the average values of two aliphatic lactones (δ-valerolactone and γ-heptanolide).

In addition, as discussed above, there seem to be fundamental differences between the mode of binding of the native substrate versus the promiscuous substrates, and it is therefore likely that the same mutation could differently affect the native and the promiscuous substrates. Better understanding of the effect of mutations awaits a sufficient number of structures of both the wild-type enzyme and its evolved mutants in complex with analogs of both the native and promiscuous substrates.

Ultimately, the acquisition of a proficient new activity must come at the expense of the old one. Yet, the relative rate by which a new function is gained, and the old one is lost matters (Figure 6). In those cases, where the native activity is maintained at a certain point increases in the new function because of originally weak (i.e., without an explicit selection for increasing the new function) spontaneous evolution, the driving force for specialization might be too high, and the selective advantage of a new function might be too low, to be overcome by the negative pressure of selection for an increase in the newly evolving activity ($A_{sp127Val}$). However, in a living cell, the negative pressure of selection will be accompanied by large losses in the original one. As a result, laboratory evolution experiments demonstrate that generalist intermediates re-specialize primarily upon dual selection for an increase in the newly evolving activity and a decrease in the original activity (149, 150–153). This route suggests that, under selection for increasing the newly evolving activity and a decrease in the original activity (149, 150–153). This route suggests that, under selection for increasing the newly evolving activity and a decrease in the original activity (149, 150–153). This route suggests that, under selection for increasing the newly evolving activity and a decrease in the original activity (149, 150–153). This route suggests that, under selection for increasing the newly evolving activity and a decrease in the original activity (149, 150–153). This route suggests that, under selection for increasing the newly evolving activity and a decrease in the original activity (149, 150–153). This route suggests that, under selection for increasing the newly evolving activity and a decrease in the original activity (149, 150–153). This route suggests that, under selection for increasing the newly evolving activity and a decrease in the original activity (149, 150–153). This route suggests that, under selection for increasing the newly evolving activity and a decrease in the original activity (149, 150–153).
Figure 6
Possible routes to the divergence of a new function. Under selection, a weak, promiscuous activity of a protein with a given primary function (blue circle) gradually evolves. By the end of this process, which typically requires many generations of mutation and selection, a new protein emerges with a new function that replaced the original one (green circle). The dynamics of this divergence process may vary. The gain-loss of the new versus old function and the conversion of one specialist protein into another may trade off linearly (dotted line) or follow either the concave or the convex route. The convex route (weak negative trade-off) is supported by the observation that large increases in the promiscuous function under selection for a new function are often accompanied by significantly smaller decreases in the original function (Table 2). By virtue of gaining a new function without losing the original one (and often gaining other new functions that were not selected for), the intermediates of these routes are generalists, and their evolution can therefore proceed prior to gene duplication. In contrast, the concave route implies that gene duplication (or other means of significantly increasing enzyme levels) is a necessary prerequisite because acquisition of even low levels of the new function is accompanied by large losses of the original one. Adapted from Reference 17.

Exceptions to Weak Negative Trade-offs

Although weak negative trade-offs are common, this generalization has notable exceptions. In few cases, a single amino acid exchange can completely switch the specificity of an enzyme (152). For example, the His89Phe mutation in the active site of tyrosine ammonia lyase switched its substrate selectivity from tyrosine to phenylalanine, with kinetic parameters and selectivity comparable to phenylalanine ammonia lyase (156). In another example, a mutant (Glu383Ala) of proA that exhibits higher promiscuous activity with N-acetylglutamyl phosphate (argC activity) traded off strongly with the original proA function (glutamyl phosphate as substrate). In this case, upregulation of the mutated proA’s facilitated growth despite the overall low rates with both acetylglutamyl phosphate (the new activity) as well as a significance decrease in the original one (60).

Size and charge considerations. The magnitude of trade-offs may depend on differences in size and charge between the native and promiscuous substrates (157, 158). Most reported studies involve promiscuous substrates that are larger than the native one and cases in which both the native and the promiscuous substrates are uncharged. In these cases, a mutation that makes the active site larger may increase activity toward the promiscuous substrate with no drastic effect on the native substrate. However, in cases where promiscuous substrates are smaller than the native ones, mutations that reshape the active site to increase contacts with the smaller substrate can reduce the activity with the larger native substrate. Still, examples for weak trade-offs at the early steps of directed evolution for smaller substrates exist (159). Other cases in which the native and promiscuous activities might trade off strongly involve differences in charge, e.g., a charged native substrate and a neutral, hydrophobic promiscuous substrate. Mutations that favor the charged substrate are likely to restrict binding of the hydrophobic one, and vice versa (60).

Targeted versus random mutagenesis. Mutations incorporated through rational design (and probably by computational design) show larger trade-offs relative to mutations obtained by selection from random repertoires, Supplemental Table 2. Follow the Supplemental Material link from the Annual Reviews home page at http://www.annualreviews.org. This difference can be largely ascribed to the location of the function-altering mutations. Evolutionary processes, in the laboratory or in

and transcription factors (142, 143) supports the idea of generalist progenitors.
nature, usually involve mutations in the active-site periphery (second and third shell mutations) with more subtle effects. However, rational design aims at the replacement of key active-site residues (first shell), and such exchanges yield more drastic changes of specificity. An interesting exception is the introduction of glutathione transferase activity in a glutathione-dependent peroxidase via a single point mutation, which may relate to the evolutionary history of these enzymes (160).

Stability Trade-offs

An important facet of the trade-off that is not reflected in the kinetic parameters per se is the effect of mutations on stability. Most mutations are destabilizing, and mutations that affect function often exhibit even higher destabilizing effects (136). Destabilization usually results in reduced cellular enzyme levels, owing to misfolding and aggregation, proteolytic digestion, or clearance. This phenomenon was first highlighted through the analysis of mutations found in clinical isolates of TEM-1 β-lactamase (27). Thus, although in terms of k_{cat} and K_M the trade-off between the native and the promiscuous functions of TEM-1 mutants is weak (Table 2, entry 10), the function-altering mutations are destabilizing, leading to much reduced enzyme levels and slow bacterial growth. For the evolutionary process to continue (in nature or in the laboratory), this loss of stability must be compensated. Indeed, many mutations that appear in directed evolution variants with no obvious role in the new function exert compensatory stabilizing effects (136, 161). A recent review addresses in detail the stability effects of mutations on protein evolution (162).

Promiscuity and Mechanisms for Divergence of New Gene Functions

The mechanisms governing the divergence of new gene-protein functions are a central part of evolutionary theory, a discipline that is unfamiliar to most biochemists. However, the notions of protein promiscuity, and the unique evolutionary features of promiscuous functions, have fundamental implications for this theory. These are briefly mentioned below.

The textbook paradigm, Ohno’s model (163), assumes that duplication is a frequent event which is largely neutral, i.e., initially, duplication provides no fitness advantage, or disadvantage, and occurs under no selection (164). The duplicated copy is redundant and free from the burden of selection, and it can therefore accumulate mutations, including deleterious ones. If and when the need arises, variants carrying duplicated genes with mutations that endow a new function become under positive, adaptive selection, thus leading to the divergence of the new gene, protein, and function.

The prerequisites of duplication and relief from selection stem from the negative trade-off assumption: Selection for the existing function purges mutations with adaptive potential, and such mutations can only accumulate in a redundant copy. However, as described above, many promiscuous functions further evolve with little effect on the original function. Ohno’s hypothesis—that gene duplication and the subsequent mutational drift occur under no selection—is being questioned for additional reasons. First, most duplicated genes found in existing genomes appear to be under functional selection that purges deleterious mutations (128, 165, 166). Second, expression of redundant mRNA and protein copies carries substantial energetic costs (56, 167), and there exists a selection pressure to inactivate their expression (55, 168). Third, gene duplication is often not a neutral event but is rather positively selected under demands for higher protein doses (129, 130). Last, over a third of the random mutations in a given protein are deleterious (134, 135, 169), whereas beneficial mutations promoting new functions are scarce (estimated frequency of $\sim 10^{-3}$). Thus, when drifting in the absence of any selection, loss of all functions (nonfunctionalization) because of mutations that undermine folding and stability (162, 170) is orders of magnitude more likely than neofunctionalization (171).
Moonlighting:
utilization of protein parts outside the active site for other functions, mostly regulatory and structural

The above observations prompted a number of alternative scenarios, which include the following:

1. Gene sharing model—a gene with a given function is recruited for a different, moonlighting function without any changes in the coding region (50, 172).

2. Divergence prior to duplication model—this model (131, 138), the parallel innovation-amplification-divergence model (130), the escape from adaptive conflict model (173), and to a degree the Hughes’ model (165) assume that the very first step toward divergence is the selection of a mutant protein with sufficiently high secondary, promiscuous activity, while retaining the original, primary function. Duplication follows and enables the complete re-specialization of the diverging function at the expense of the original function (Figure 6).

3. Duplication is a positively selected event, leading to increased variability. When divergence is capitalizing on a weak promiscuous activity in an existing protein, immediate selective advantage can be provided by increasing protein doses. Thus, duplication and the resulting higher protein levels have key roles in enabling promiscuous functions to become physiologically relevant and in enabling a wider variety of function altering mutations to accumulate. Despite the generally weak trade-offs, at the end of the day, mutations that endow new enzymatic functions often have a measurable effect on the existing enzymatic function and/or on the enzyme’s stability and expression levels. The acquisition of potentially beneficial mutations can only continue as long as the existing function is reduced to an extent that does not severely compromise organismic fitness. By virtue of two genes carrying the same level of function, duplication offers a margin that allows a larger variety of potentially beneficial mutations to accumulate provided that, contrary to Ohno’s model, the two genes remain under selection (117, 128, 171).

SUMMARY POINTS

1. Promiscuity regards reactions that an enzyme performs, although it never evolved to do so (as opposed to its original, native activity).

2. Promiscuous activities are not rare exceptions but are rather widely spread, inherent features of enzymes, and proteins in general.

3. Specificity and promiscuity can reside within the same active site. Promiscuous enzymatic functions may utilize different active-site conformers, and their mechanisms can overlap, partly overlap, or differ altogether from the mechanism by which an enzyme performs its native function.

4. Promiscuous enzyme functions provide immediately accessible starting points for the evolution of new functions via a gradual mutational path that eventually converts a weak, promiscuous function into the primary, native function.

5. A promiscuous function of an enzyme can be a vestige of the function of its ancestor. Promiscuous activities shared by members of same enzyme family and/or superfamily correlate with their divergence from a common ancestor.

6. Mutations that increase a promiscuous activity and have little effect on the primary, native function (weak trade-off) underlie the divergence of a new enzymatic function via a generalist intermediate.
7. The notion of promiscuity as the seed of new gene functions has significant implications for evolutionary theory. Although gene duplication is the key to divergence of new gene functions, when and how duplication occurs and how a new enzyme diverges from an existing one are still a matter of debate.

FUTURE ISSUES

1. Rigorous and quantitative measures of promiscuity are needed, including ways of systematically measuring the magnitude and degree of promiscuity in a wide range of proteins.
2. Are promiscuous functions executed in modes (structural, thermodynamic, kinetic, and/or mechanistic) that fundamentally differ from the modes of primary, native function?
3. Better physicochemical understanding of the effects of mutations on native versus promiscuous activities, and of the origins of the weak trade-offs between the evolving promiscuous activity and the original activity, is needed.
4. Clear cut cases of natural enzymes that diverged from other natural enzymes by virtue of a latent promiscuous activity might be identified from inferred ancestors, recently evolved bacterial enzymes that degrade anthropogenic or xenobiotic chemicals, or secondary metabolism of plants.
5. It remains unclear whether there are fundamental structural and mechanistic differences between generalists and specialists and whether the evolutionary history of an enzyme dictates its future. Are highly specialized enzymes of the central metabolism (enzymes that experienced little change) less promiscuous and less evolvable than secondary metabolism enzymes that have constantly evolved under changing environments?
6. Complete evolutionary trajectories from one specialist to another specialist, whereby the promiscuous activity becomes primary, and vice versa, need to be reproduced in the laboratory (Figure 6). Such experiments can unravel the molecular basis of conversion and possible reversion of traits such as robustness and evolvability.
7. The roles of promiscuity of individual enzymes (flexible proteomes) and of cross-wiring of metabolic pathways (flexible metabolomes), in both physiological and evolutionary adaptations, need to be examined.

DISCLOSURE STATEMENT

The authors are not aware of any affiliations, memberships, funding, or financial holdings that might be perceived as affecting the objectivity of this review.

ACKNOWLEDGMENTS

Financial support by the Sasson and Marjorie Peress Philanthropic Fund, the Israel Science Foundation, the European Union via the MiFEM network, and the Adams Fellowship to O.K. is gratefully acknowledged. We thank Shelley Copley for reviewing the manuscript and for her
constructive criticism and thank John Gerlt, Patsy Babbitt, and our lab members for insightful discussions.

LITERATURE CITED

91. lnactivating C424 to substituted aminopeptidase from Streptomyces griseus. J. Am. Chem. Soc. 127:16380–81

Contents

Preface

The Power of One
 James E. Rothman .. v

Prefatory Article

Frontispiece
 Aaron Klug ... xiv

From Virus Structure to Chromatin: X-ray Diffraction to Three-Dimensional Electron Microscopy
 Aaron Klug ... 1

Recent Advances in Biochemistry

Genomic Screening with RNAi: Results and Challenges
 Stephanie Mohr, Chris Bakal, and Norbert Perrimon 37

Nanomaterials Based on DNA
 Nadrian C. Seeman .. 65

Eukaryotic Chromosome DNA Replication: Where, When, and How?
 Hisao Masai, Seiji Matsumoto, Zhiying You, Naoko Yoshizawa-Sugata, and Masako Oda .. 89

Regulators of the Cohesin Network
 Bo Xiong and Jennifer L. Gerton .. 131

Reversal of Histone Methylation: Biochemical and Molecular Mechanisms of Histone Demethylases
 Nima Mosammaparast and Yang Shi .. 155

The Mechanism of Double-Strand DNA Break Repair by the Nonhomologous DNA End-Joining Pathway
 Michael R. Lieber ... 181

The Discovery of Zinc Fingers and Their Applications in Gene Regulation and Genome Manipulation
 Aaron Klug ... 213
Origins of Specificity in Protein-DNA Recognition
Remo Rohs, Xiangshu Jin, Sean M. West, Rohit Joshi, Barry Honig, and Richard S. Mann ... 233

Transcript Elongation by RNA Polymerase II
Luke A. Selth, Stefan Sigurdsson, and Jesper Q. Svejstrup ... 271

Biochemical Principles of Small RNA Pathways
Qinghua Liu and Zain Paroo ... 295

Functions and Regulation of RNA Editing by ADAR Deaminases
Kazuko Nishikura .. 321

Regulation of mRNA Translation and Stability by microRNAs
Marc Robert Fabian, Nabam Sonenberg, and Witold Filipowicz 351

Structure and Dynamics of a Processive Brownian Motor:
The Translating Ribosome
Joachim Frank and Ruben L. Gonzalez, Jr. .. 381

Adding New Chemistries to the Genetic Code
Chang C. Liu and Peter G. Schultz .. 413

Bacterial Nitric Oxide Synthases
Brian R. Crane, Jawahar Sudhamsu, and Bhumit A. Patel 445

Enzyme Promiscuity: A Mechanistic and Evolutionary Perspective
Olga Khersonsky and Dan S. Tawfik .. 471

Hydrogenases from Methanogenic Archaea, Nickel, a Novel Cofactor, and H₂ Storage
Rudolf K. Thauer, Anne-Kristin Kaster, Meike Goenrich, Michael Schick, Takeshi Hiromoto, and Seigo Shima ... 507

Copper Metallochaperones
Nigel J. Robinson and Dennis R. Winge .. 537

High-Throughput Metabolic Engineering: Advances in Small-Molecule Screening and Selection
Jeffrey A. Dietrich, Adrienne E. McKee, and Jay D. Keasling 563

Botulinum Neurotoxin: A Marvel of Protein Design
Mauricio Montal .. 591

Chemical Approaches to Glycobiology
Laura L. Kiessling and Rebecca A. Splain .. 619

Cellulosomes: Highly Efficient Nanomachines Designed to Deconstruct Plant Cell Wall Complex Carbohydrates
Carlos M.G.A. Fontes and Harry J. Gilbert ... 655
Somatic Mitochondrial DNA Mutations in Mammalian Aging

Nils-Göran Larsson ... 683

Physical Mechanisms of Signal Integration by WASP Family Proteins

Shae B. Padrick and Michael K. Rosen .. 707

Amphipols, Nanodiscs, and Fluorinated Surfactants: Three
Nonconventional Approaches to Studying Membrane Proteins in
Aqueous Solutions

Jean-Luc Popot ... 737

Protein Sorting Receptors in the Early Secretory Pathway

Julia Dancourt and Charles Barlowe .. 777

Virus Entry by Endocytosis

Jason Mercer, Mario Schelhaas, and Ari Helenius 803

Indexes

Cumulative Index of Contributing Authors, Volumes 75–79 835
Cumulative Index of Chapter Titles, Volumes 75–79 839

Errata

An online log of corrections to *Annual Review of Biochemistry* articles may be found at http://biochem.annualreviews.org