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ABSTRACT

The primary challenge of fixed-backbone protein design is to find a distribution of sequences that
fold to the backbone of interest. This task is central to nearly all protein engineering problems, as
achieving a particular backbone conformation is often a prerequisite for hosting specific functions. In
this study, we investigate the capability of a deep neural network to learn the requisite patterns needed
to design sequences. The trained model serves as a potential function defined over the space of amino
acid identities and rotamer states, conditioned on the local chemical environment at each residue.
While most deep learning based methods for sequence design only produce amino acid sequences,
our method generates full-atom structural models, which can be evaluated using established sequence
quality metrics. Under these metrics we are able to produce realistic and variable designs with
quality comparable to the state-of-the-art. Additionally, we experimentally test designs for a de novo
TIM-barrel structure and find designs that fold, demonstrating the algorithm’s generalizability to novel
structures. Overall, our results demonstrate that a deep learning model can match state-of-the-art
energy functions for guiding protein design.

Significance

Protein design tasks typically depend on carefully modeled and parameterized heuristic energy functions. In this study,
we propose a novel machine learning method for fixed-backbone protein sequence design, using a learned neural
network potential to not only design the sequence of amino acids but also select their side-chain configurations, or
rotamers. Factoring through a structural representation of the protein, the network generates designs on par with the
state-of-the-art, despite having been entirely learned from data. These results indicate an exciting future for protein
design driven by machine learning.
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Introduction

Figure 1: Method Overview. We train a deep con-
volutional neural network (CNN) to predict amino
acid identity and discretized rotamer angles given
the local environment around the residue (box not
to scale). Amino acid type and rotamer angles are
sampled in an autoregressive fashion for each residue
position. Sequences are designed onto fixed protein
backbones by sampling or optimization of the pseudo-
log-likelihood of the sequence under the model.

Computational protein design has emerged as a powerful tool to
expand the space of known protein folds [1, 2, 3, 4, 5, 6], create
variations on existing topologies [7, 8, 9, 10, 11], and access the
vast space of sequences yet to be traversed by evolution [12]. These
advances have enabled significant achievements in the engineering
of therapeutics [13, 14, 15], biosensors [16, 17, 18], enzymes [19,
20, 21, 22], and more [23, 24, 25, 26, 27]. Key to such successes
are robust sequence design methods that minimize the folded-state
energy of a pre-specified backbone conformation, which can either be
derived from existing structures or generated de novo. This difficult
task is often described as the “inverse” of protein folding—given a
protein backbone, design a sequence that folds into that conformation.

Current approaches for fixed-backbone sequence design commonly
involve specifying an energy function and sampling sequence space to
find a minimum-energy configuration. Methods for optimizing over
residues and rotamers include variations on the dead-end elimination
algorithm [28, 29, 30, 31], integer linear programming [32, 33], belief
propagation [34, 35], and Markov Chain Monte Carlo (MCMC) with
simulated annealing [36, 37, 38]. RosettaDesign [39, 40], an example
of the latter, is the only method among these that has been broadly
experimentally validated. [39, 40].

Most molecular mechanics force fields are highly sensitive to spe-
cific atom placement, and as a result the designed sequences can be
convergent for a given starting backbone conformation. For most
native proteins, however, the existence of many structural homologs
with low sequence identity suggests that there are a distribution of
viable sequences that fold into a given target structure. Access to
these sequences can be important for function, as is evident in most
evolutionary trajectories, both natural and in vitro [41, 42]. In prac-
tice, the generation of diverse sequences with Rosetta often requires
manually manipulating amino acid identities at key positions [7, 9],
adjusting the energy function [43, 44], or explicitly modeling pertur-
bations of the protein backbone [45, 46, 47, 48]. Design methods
that account for flexibility of the protein backbone often use “softer”
potentials [44, 49], such as statistical potentials that are derived from
data [50, 51, 50, 52, 53, 54], but these methods often do not perform
as favorably as well-parameterized "hard" molecular mechanics force
fields.

We sought to develop a method that could potentially produce diverse
sequences from a fixed starting backbone while capturing accurate physical interactions to guarantee the viability of the
sequences. Additionally, while conventional energy functions used in sequence design calculations are often composed
of pairwise terms that model interatomic interactions, we hypothesized that a more comprehensive representation of the
environment could better capture the multi-body nature of interacting amino acids (e.g., in hydrogen bonding networks).

With the emergence of deep learning systems and their ability to learn patterns from high-dimensional data, it is
now possible to build models that learn complex functions of protein sequence and structure, including models for
protein backbone generation [55] and protein structure prediction [56]. We anticipated that a deep learning approach
conditioned on local chemical environments could capture higher order interactions relevant for sequence design, while
still allowing for implicit modeling of backbone flexibility.

In this study, we explored an approach for fixed-backbone sequence design that uses a neural network model as a
statistical potential learned directly from crystal structure data. This potential predicts a distribution over the amino acid
identity and rotamers at a given residue position, conditioned on the surrounding chemical environment. To design
sequences and rotameric states for a candidate protein backbone, we iteratively sample from these learned conditional
distributions at each residue position. While conventional energy functions require careful parameterization and iterative
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refinement, our method learns directly from data and requires no modeling or additional fitting to data apart from
training the network.

Not relying on any human-specified priors, rather learning directly from crystal structure data, our method produces
realistic and variable sequences with quality on par with Rosetta designs under several key metrics. We computationally
validate designed sequences via structure prediction and experimentally test the generalization of our method to a de
novo TIM-barrel scaffold, showcasing its practical utility in design applications for which there are no closely-related
native structures.

Results

Approach

We train a deep 3D convolutional neural network (CNN) to predict amino acid identity given the residue’s local
environment, consisting of all neighboring backbone and side-chain atoms within a fixed field-of-view, masking the
side-chain atoms of the residue of interest. This conditional model defines a distribution over amino acid types and
rotamer angles at each sequence position (Figure 1). We also train a baseline model that has only backbone atoms as
an input, as a means to initialize the backbone with a starting sequence.

Given a backbone structure X for an n-residue protein, we are interested in sampling from the true distribution of
sequences Y given X ,

P (Y |X) = p(y1, . . . , yn|X)

We assume that the identity and conformation (rotamer) of each side-chain yi is entirely determined by its local context,
namely the identities and rotamers of its neighboring residues yNB(i) and backbone atoms X .

Under this assumption, the input backbone X defines a graph structure, where nodes correspond to rotamers yi and
edges exist between pairs of residues (yi, yj) within some threshold distance of each other. We can intepret this graph
as a Markov Random Field (MRF), where each rotamer yi is independent of all residues conditioned on those in its
Markov blanket, i.e.

p(yi|y−i, X) = p(yi|yNB(i), X) , p(yi|env)

The conditional distribution at a single residue position i can be factorized as follows:

p(yi|envi) = p(ri|env) p(χ1i|ri, envi)p(χ2i|ri, χ1i, envi)
p(χ3i|ri, χ1i, χ2i, envi)p(χ4i|ri, χ1i, χ2i, χ3i, envi)

where ri is the amino acid type of residue i and χ1-χ4 are the torsion angles for the side-chain.

If we had access to the the true conditional distributions p(yi|envi) for each residue, by doing Gibbs sampling over
the graph, we would be able draw samples as desired from the joint distribution P (Y |X). Gibbs sampling is an
MCMC algorithm and involves repeatedly sampling values for each variable conditioned on the assignments of all other
variables [57]. We train a network to learn these conditional distributions from data. For a residue position i, given
backbone atoms X and neighboring rotamers yNB(i), our trained classifier outputs pθ(yi|env), a discrete distribution
over amino acid types and rotamers where pθ(yi|env) ≈ p(yi|env).

The network is trained to learn this conditional distribution in an autoregressive manner. Conditioning on the local
environment, the network predicts a distribution over residue types pθ(ri|envi). Then, both the environment feature
vector and the ground-truth residue identity r̂i are used to predict a discrete distribution pθ(χ1i|r̂i, envi). Then, the
environment feature vector, the ground-truth residue identity, and the discretized ground-truth angle χ̂1i are used to
predict a discrete distribution pθ(χ2i|χ̂1i, r̂i, envi). This autoregressive unroll proceeds up to χ4i.

We approximate the joint probability of a sequence P (Y |X) with the pseudo-log-likelihood (PLL) [58] of the sequence
under the model,

PLL(Y |X) =
∑
i

log pθ(yi|envi)

Training the neural network with cross-entropy loss involves maximizing the log probability of the correct residue
class given the residue environment, and the PLL is the sum of these log probabilities. We treat the negative PLL as a
heuristic model energy for selecting sequences and in some experiments optimize the PLL via simulated annealing.
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Figure 2: Model-based rotamer repacking and sequence design. A) Native test case backbones. B-C) Post-design metrics: B)
Rotamer repacking results. (Left) Post-repack rotamer side-chain RMSD (Å) across all test cases, 5 runs each (Random initialization
of rotamers, initialization with baseline model prediction from backbone atoms only, rotamer repacking with conditional model,
Rosetta rotamer packing starting from baseline model initialization with and without extra χ1, χ2 sampling). (Right) Visualization
of 5 rotamer repacking trajectories for test case 3mx7 (Black – model-designed rotamers. Blue – crystal structure side-chains).
C) Native sequence recovery. (Left) Model design for test case 1cc8 (White – crystal structure. Pink/purple – model-designed
non-mutations/mutations). (Right) Fraction native sequence recovery for model versus Rosetta baselines across all test cases(n = 50).
D-E) Design variability: D) Cluster plot representation of inter-sequence string distances across methods for test cases. Edges are
between sequences with greater than 37.5% overlap with weights proportional to percent sequence overlap. Nodes are positioned
using the Fruchterman-Reingold force-directed algorithm [59]. E) Position-wise amino acid distributions for test case 1cc8. Columns
are ordered by increasing solvent-accessible surface area (SASA) of native sequence residues from left to right. (Top) Native
sequence and aligned homologous sequences from MSA (n = 670); (Middle) Model designs (n = 50); (Bottom) Rosetta-FixBB
designs. (n = 50). MSAs obtained using PSI-BLAST v2.9, the NR50 database, BLOSUM62 with an E-value cutoff of 0.1.

Trained classifier recapitulates expected biochemical features

Our conditional model achieves a 57.3% test set accuracy for amino acid type prediction, and the baseline classifier
achieves a 33.5% test set accuracy. Compared to other machine learning models for the same task, our model gives an
improvement of 14.7% over [60] (42.5%), and similar performance to [61] (52.4%), [62] (56.4%) and [63] (58.0%).
We note that we do not use the same train/test sets as these studies. The predictions of the network correspond well with
biochemically justified substitutability of the amino acids (Fig. S1A and B). For example, the model often confuses
large hydrophobic residues phenylalanine (F), tyrosine (Y), and tryptophan (W), and within this group, more often
confuses Y for F which are similarly sized compared to the bulkier W. This type of learned degeneracy is necessary
in order for the classifier to be useful for guiding residue selection in sequence design, as native proteins are often
structurally robust to mutations at many residue positions.

Looking at residue-specific accuracies (Fig. S1C, top), on the whole, the conditional model is more certain about
hydrophobic/non-polar residue prediction compared to hydrophilic/polar; this corresponds with the intuition that
exposed regions in many cases allow a variety of polar residues, while buried core regions might be more constrained
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and therefore accommodate a limited set of hydrophobic residues. Both the conditional and baseline models do
especially well at predicting glycine and proline residues, both of which are associated with distinct backbone torsion
distributions (Fig. S1C).

The conditional model is trained to predict binned rotamer torsion (χ) angles in an autoregressive fashion. Across 24
bins, the hard test set accuracy of the model is 52.7%, 43.6%, 26.8%, and 30.6% for χ1-χ4, respectively. The hard
accuracy represents accuracy to within less than 15 degrees. We also report the accuracy to within 30, 45, and 60
degrees (Fig. S1D).

The rotamer prediction module by construction is a backbone-dependent rotamer library that samples from the joint
distribution p(χ1i, χ2i, χ3i, χ4i|X, ri), given backbone atoms X and residue identity ri. We see that the network-
learned factorized χ distributions match well with the empirical residue-specific rotamer distributions (Fig. S1D), which
rotamer libraries typically seek to capture.

Design algorithm recovers native rotamers and sequence

We selected four native structures from the test set as test cases for evaluating our method: PDB entries 1acf, 1bkr, 1cc8,
and 3mx7 (Fig. 2A). We selected these test structures because they span the three major CATH [64, 65] protein structure
classes (mostly alpha, alpha-beta, and mostly beta) and because their native sequences were recoverable via structure
prediction with Rosetta AbInitio, ensuring they could serve as a positive control for later in silico folding experiments.

We assess the performance of our sequence design method by comparison with two Rosetta baselines. The first, Rosetta-
FixBB, is a fixed-backbone Rosetta design protocol, and the second, Rosetta-RelaxBB, interleaves backbone relaxes
between fixed-backbone design cycles, allowing the template backbone to move. The Rosetta-FixBB protocol provides
the most relevant comparison to our method as both operate on fixed backbones. However, Rosetta-RelaxBB is the more
commonly used mode of sequence design, generating solutions that are more variable than those of Rosetta-FixBB. We
have therefore included designs from both methods for comparison.

We first evaluated how well the model can pack rotamers, given a fixed backbone and sequence – a benchmark normally
requiring highly accurate energy functions to achieve good results (Movie S1). The model is capable of recovering
rotamers with low side-chain RMSD (Å) and low l2 χ recovery error to native (Fig. 2B and S3A and Dataset S2).
Moreover, Rosetta is far more sensitive to the backbone than the model: for the test case 1acf, Rosetta does well once
the crystal structure backbone has been relaxed under the Rosetta energy function with the native sequence and rotamers
in place; our model, however, is robust to the deviations in the backbone and performs similarly in both cases (Fig.
S3A).

We next ran sequence and rotamer design trajectories for the native backbone test cases (Dataset S2 and Movie S2). On
average, the model recapitulates the native sequence to a similar extent as Rosetta-FixBB and to a better extent than
Rosetta-RelBB (Fig. 2C and S3B). In addition, model-designed sequences adhere to an amino acid distribution similar
to the native sequence and its aligned homologs (Fig. S4A and SI Appendix 1A).

Model designs achieve greater sequence diversity than fixed-backbone Rosetta designs

While the Rosetta-FixBB designs are convergent, the model designs are more variable in terms of inter-sequence
overlaps across designs (Fig. 2D and S4B).

We studied patterns of variability by position, specifically between solvent-exposed and buried regions. The model
designs are more variable in solvent-exposed regions, as are sequences homologous to the native found through
multiple sequence alignment (MSA); in comparison, the Rosetta-FixBB protocol is much more convergent (Fig. 2E
and S4C). However, both the model designs and Rosetta designs converge to similar core (low solvent-accessible
surface area) regions, indicating that perhaps the need for a well-packed core in combination with volume constraints
determined by the backbone topology might limit the number of feasible core designs. In general, model designs have
higher position-wise entropy (Figure S4D, bottom), while still retaining correct patterns of hydrophobic/non-polar and
hydrophilic/polar residue positions at buried and solvent-exposed positions, respectively.

Model designs are comparable to Rosetta designs under a range of biochemically relevant metrics

We next assessed the validity of designed sequences en masse using metrics that are agnostic to any energy function.

Sequences designed onto the test case backbones should ideally have the following key biochemical properties [66, 67]:
(1) core regions should be tightly packed with hydrophobic residues, a feature that is important for driving protein
folding and maintaining fold stability [68, 69, 70]; (2) designs should have few exposed hydrophobic residues, as these
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Figure 3: Model captures salient design features and general sequence-structure relationship. A-B) Designed structural
features of interest. A) Structure supporting polar networks, inter-side-chain (SC-SC) and side-chain–backbone (SC-BB) contacts,
and N-terminal helical caps. B) Well-packed hydrophobic core regions and model-designed disulfide. C-D) Decoy ranking for test
cases. C) Decoy ranking with model and Rosetta energies. (Left) Model energy (negative PLL) vs. alpha-carbon RMSD (Å) for
Rosetta AbInitio folded structures. Points are colored by structure Rosetta energy. (Right) Rosetta energy (negative PLL) vs. alpha
carbon RMSD (Å) for folded structures. Points are colored by structure model energy. (Inset) Select structures rendered to visualize
alternative minima under model ranking for 1acf and 1cc8. D) Spearman rank correlation between model/Rosetta energies and
structure alpha-carbon RMSD (Å) as a function of increasing RMSD cutoff.

incur an entropic penalty as a result of solvent ordering under the hydrophobic effect and an enthalpic penalty from
disrupting hydrogen bonding between polar solvent molecules [71, 72, 73], making it energetically favorable to place
polar residues at solvent-accessible positions and apolar residues at buried positions; (3) If polar residues are designed
in core regions, they should be supported by hydrogen bonding networks [74, 23].

Model designs tend to be well-packed, with core packing overall improving after relaxing the backbone under the
Rosetta energy function (Fig. S5A,B). In general, the model-designed sequences do not have exposed hydrophobics
in solvent-exposed positions, similar to the Rosetta designs (Fig. S5C). Finally, the model designs match the native
structure in terms of numbers of side-chain and backbone buried unsatisfied hydrogen bond acceptors and donors (Fig.
S5D-F); this indicates that over the course of model design, side-chains that are placed in buried regions are adequately
supported by backbone hydrogen bonds or by design of other side-chains that support the buried residue (SI Appendix
1B).

To confirm that key sequence features are retained despite the increased variability seen, we calculated Psipred
[75, 76, 77, 78, 79, 80] secondary structure prediction cross-entropy relative to DSSP assignments [81]. We found that
the predictions for model-designed sequences from single sequences are comparable in accuracy to those for the native
sequence and Rosetta designs (Fig. S6A), indicating that despite variation, the designed sequences retain local residue
patterns that allow for accurate backbone secondary structure prediction.

A key structural feature is the placement of N-terminal helix capping residues—typically there will be an aspartic acid
(D), asparagine (N), serine (S), or threonine (T) preceding the helix starting residue, as these amino acids can hydrogen
bond to the second backbone nitrogen in the helix [82, 83]. The majority of both the model designs and the Rosetta
designs successfully place these key residues at the native backbone capping positions (Fig. S6B).
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By inspection, we also see a number of specific notable features across the test cases. These include placement of
glycines at positive φ backbone positions (Fig. S6C), placement of prolines at cis-peptide positions (Fig. S6D), polar
networks supporting loops and anchoring secondary structure elements (Fig. 3A), and well-packed core regions (Fig.
3B).

Designed sequences are corroborated by blind structure prediction

To determine whether the model-designed sequences could adopt structures with low Rosetta energy and low root-
mean-square (RMS) deviation from the starting backbone, we performed blind structure prediction using the AbInitio
application in Rosetta [84, 85, 86].

Top sequences for validation were selected based on quantitative design metrics (see Methods), and for each test case
we ran AbInitio folding on the selected model design in addition to the best Rosetta designs and a 50% perturbed native
sequence baseline under our selection criteria (Dataset S3).

The model designs had generally low sequence identity to the native sequence (≤ 43.1%), but were able to closely
recover the native backbones (Fig. S8). All of the model designs achieved significantly better recovery than the 50%
randomly perturbed cases. These results suggest that (1) close recovery of the native backbone is due to features learned
by the model and not simply due to sequence overlap with the native, and (2) that our method is able to generate
solutions not accessible via Rosetta design, that differ from native sequences, and yet fold under the Rosetta energy
function.

Model captures sequence-structure relationship

We next asked whether the model has learned to be robust to a larger range of input backbones beyond what is seen in
the train set, as well as whether the model PLL can be used to find high likelihood backbones given a target sequence.
In essence, we query the extent to which the classifier can capture the likelihood of structure given sequence.

We evaluated the model energy (negative PLL) and the Rosetta energy for a range of structures (decoys) folded with the
Rosetta AbInitio structure prediction protocol (Fig. 3C). Although we do not expect the model to generalize to highly
out-of-distribution backbones (for example, distended or unfolded backbones), we see that the model energy is low for
the decoys with lowest RMS to the native backbone, and that the energy vs. RMS plots have a “funnel”-like shape. This
indicates that for low RMS structures the model is robust to deviations in the input backbone and can be used to select
structures closer to the native backbone. There are cases where the model assigns high PLL to high RMS backbones
(Fig. 3C, inset); for example, for 1acf an alternative N-terminal helix conformation and for 1cc8 an alternative pattern
of beta strand pairing are assigned high PLLs.

Quantitatively, we see that in the lower RMS regime (∼< 10Å from the native), the relationships between the model or
Rosetta energies and the structure RMS are similarly monotonic as measured by the Spearman rank correlation (Fig.
3D), indicating that the model energy and Rosetta energy can rank order structures by RMS with similar accuracy.

Unlike an analytical energy function, the model energy is not expected to generalize to structures far from the training
distribution. However, these results suggest that the model has to an extent learned features that capture sequence-
structure energetics, and in particular are useful for identifying and ranking low RMS decoys.

Application – Model-based sequence design of a de novo TIM-barrel

Design of de novo proteins remains a challenging task as it requires robustness to backbones that lie near, but outside
the distribution of known structures. Successful de novo protein designs often lack homology to any known sequences
despite the fact that de novo structures can qualitatively resemble known folds [9, 7, 88]. For a design protocol to
perform well on de novo backbones it must therefore avoid simple recapitulation of homologous sequences.

To assess whether our model could perform sequence design for de novo structures, we tested our method on a
Rosetta-generated four-fold symmetric de novo TIM-barrel backbone.

The TIM-barrel backbone is a circularly permuted variant of the reported design 5bvl [7], which was excluded from
the training set. While we did not exclude native TIM-barrels from the training set, 5bvl is distant in sequence and
structure from any known protein, and contains local structural features that differ significantly from naturally occurring
TIM-barrels [7], making it unlikely that the model would return memorized sequences found in the training set as
solutions. The original design 5bvl was designed using a combination of Rosetta protocols and manual specification of
residues.
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Figure 4: Model-guided sequence design of four-fold symmetric de novo TIM-barrels. A) Four-fold symmetric TIM-barrel
design (Model design 2). Hydrophobic core packing shown for half of the protein (pink). B) Designed polar networks, as well
as N-terminal helical caps and helix space-setting tryptophan placement. C) Rosetta AbInitio structure prediction for original
TIM-barrel design [7] (top) and three model designs (bottom). (Left) Rosetta energy versus alpha-carbon RMSD (Å) to template
for folded structures. Selected structure with best summed rank of template-RMSD and Rosetta energy is shown in orange. The
design after RosettaRelax is shown in green. (Right) Selected decoy (blue) aligned to native backbone (pink). D) trRosetta recovered
structures [87] for original and model designs. 5 structures shown (teal) aligned to native backbone (light pink) E) Far UV circular
dichroism (CD) spectra taken at 20◦C (blue) and 95 ◦C (orange). Raw data is normalized to show mean residue ellipticity ΘMRW

(deg cm2 dmol−1). F) Thermal melting curves showing normalized CD signal ΘMRW at 222 nm.

We generated four-fold symmetric sequences for this template by sampling without annealing and using Rosetta for
rotamer repacking in place of the model rotamer predictions. We found that designs exhibited dense hydrophobic
packing (Fig. 4A), and had hydrogen-bonding networks and correctly placed helical capping residues (Fig. 4B).

We selected 8 four-fold symmetric designs to test experimentally (Dataset S4). These structures were predicted to
fold with low deviation into the desired structure by Rosetta AbInitio structure prediction (Fig. 4C), as well as by the
newer deep-learning based trRosetta method [87] (Fig. 4D). Of these 8 designs, 3 are cooperatively folded proteins, as
indicated by circular dichroism (CD) wavelength scans (Fig. 4E) and by the presence of clear two-state transitions in
thermal melt curves (Fig. 4F).

Overall, these results indicate that our method can produce folded designs even for protein backbones outside the space
of known native structures.

Discussion

In this study, we demonstrate that a design algorithm guided by an entirely learned neural network potential can give a
distribution of possible sequences for a fixed backbone. Our method is able to design sequences which are comparable
to those designed by Rosetta protocols across a range of key biochemical metrics, and we show how our design method
generalizes to de novo backbones with experimental evidence supporting designed sequences folding to stable proteins.
Remarkably, the our design algorithm captures key behaviors of established design methods guided by energy functions,
such as the ability to (1) accurately determine side-chain conformations, (2) differentiate the hydrophobic interior and
polar exterior of the proteins, (3) design multi-body interactions as reflected by readily produced hydrogen-bonding
networks, and (4) discriminate low RMS structures in a folding simulation trajectory.
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Ours is the first deep learning method to tackle both sequence and rotamer design. Previous machine learning models
for the task of residue prediction conditioned on chemical environment have only been applied to single-shot residue
prediction or architecture class, secondary structure, or ∆∆G prediction [60, 89, 62, 63, 61]. Other deep learning
approaches have been developed for sequence design or rotamer packing [90, 91, 92, 93, 94, 95], but most of these
methods’ designs have not been comprehensively validated by a range of biochemical metrics or by folding in silico or
in vitro.

The primary limitations to using a deep neural network to guide design in this manner are the possibility of artifacts due
to the model learning non-robust features from the data and the inability of the network to generalize to backbones
far from the training distribution. We show that the model does in fact produce biochemically justifiable designs, and
moreover generalizes to out-of-distribution backbones (Fig. 3C-F). Overall, our results show that a neural network
can learn necessary patterns to match state-of-the-art energy functions for guiding protein design, even without any
hand-engineered features. Our method is also flexible—the design protocol easily allows for adding position-specific
constraints during design, and other neural network models could be used in place of the classifier network presented
without fundamentally changing the method. Though we evaluated our method against Rosetta in this paper, in practice
our method could be combined with Rosetta in a natural way. Rosetta design protocols run MCMC with a uniform
proposal distribution over amino acid types and rotamers. Instead, the distribution provided by the classifier could be
used as a proposal distribution for Rosetta design protocols, potentially speeding up convergence. The model energy,
along with other metrics, could also be used to guide early stopping to avoid over-optimization of the Rosetta energy
function.

Although we have shown in this paper how sampling with a trained deep neural network classifier can be used for
sequence design, the framework we have outlined has many possible applications beyond fixed-backbone sequence
design. We anticipate that the procedure we have established could be used to guide the design of interfaces, protein-
nucleic acid complexes, and ligand binding sites. Because our model can design networks of polar interactions, we
believe the method could potentially be extended to model water-mediated contacts during design.

Our results demonstrate both the practical applicability of an entirely learned method for protein design and also the
capability of deep learning models to learn sequence-structure features, heretofore best captured by heuristic energy
functions. We believe this study demonstrates the potential for machine learning methods to transform current methods
in structure-based protein design.

Methods

Dataset S5 available for download at https://drive.google.com/file/d/1yBQ42M4yRWlb4G6vF1QS8_
_IUfv5eJul/view?usp=sharing

Code available at https://github.com/nanand2/protein_seq_des

Design algorithm

Given a candidate protein backbone for which a corresponding sequence is desired, we initialize a sequence and then
iteratively sample amino acid identities and rotameric states from the conditional probability distribution defined by the
classifier network in order to design sequences.

Initialization can be done arbitrarily. In this study, we initialize the sequence and the rotamers by sampling from the
baseline model predicted distributions. The baseline model is only conditioned on backbone atoms.

Given a residue position i and a local environment envi around that residue with either just backbone atoms (baseline
model) or other residue side-chains as well (conditional model), the sampling procedure is as follows. First, sample a
residue type r̂i conditioned on the environment.

r̂i ∼ pθ(ri|envi)

Then, conditioned on the environment and the sampled amino acid type, sample rotamer angles for that residue type in
an autoregressive manner:

χ̂1i ∼ pθ(χ1i|r̂i, envi)

χ̂2i ∼ pθ(χ2i|r̂i, χ̂1i, envi)
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χ̂3i ∼ pθ(χ3i|r̂i, χ̂1i, χ̂2i, envi)

χ̂4i ∼ pθ(χ4i|r̂i, χ̂1i, χ̂2i, χ̂3i, envi)

After a discrete rotamer bin has been sampled, rotamer angles are sampled uniformly within the selected bin.

As residues and rotamers are sampled at different positions along the protein backbone, we monitor the negative
pseudo-log-likelihood of the sequence as a heuristic model energy. Note that most residues have fewer than four χ
angles. At sampling time, for each residue only the corresponding χ angles are sampled. For residues which do not
have a particular χj , an average value for the log probability of χj under the conidtional model across the train set and
across the rotamer bins is used instead in the PLL calculation.

In this study we use a Gibbs sampling procedure, where we iteratively sample residue types and rotamer states from the
learned conditional distributions. Although the learned distribution pθ(yi|env) is only an approximation of the true
conditional distribution, if the learned conditionals were to match the true data conditionals, then a Gibbs sampler run
with the learned conditionals would have the same stationary distribution as a Gibbs sampler run with the true data
conditionals [96]. In some cases, we do simulated annealing to optimize the PLL.

In order to speed up convergence, we do blocked sampling of residues. In practice, we draw edges in the graph between
nodes where corresponding residues have Cβ atoms that are less than 20 Å apart, guaranteeing that non-neighboring
nodes correspond to residues that do not appear in each other’s local environments. During sampling, we use greedy
graph coloring to generate blocks of independent residues. We then sample over all residues in a block in parallel,
repeating the graph coloring every several iterations.

The model is restricted from designing glycines at non-loop positions, based on DSSP assignment [97, 81].

Rotamer repacking. Five rounds of rotamer repacking were done on each of the four test case backbones. Repacking is
done by fixing the native sequence and randomizing starting rotamers, or using baseline model predictions on backbone
atoms only to initialize rotamers. Rotamer prediction at each step and each residue position conditions on the true
native residue identity. Model negative PLL averaged by protein length was annealed for 2500 iterations with starting
temperature 1 and annealing multiplicative factor 0.995. Rotamer repacking was evaluated under two metrics: the χ
angle l2 distance between the unit vectors corresponding to the rotamer angles, and residue side-chain RMSD (Å).

Native test case sequence design. Fifty rounds of sequence and rotamer design were done on each of the four test case
backbones. Model negative PLL averaged by protein length was annealed for 2500 iterations with starting temperature 1
and annealing multiplicative factor 0.995. Top sequences for structure prediction were filtered by the following criteria:
all helices capped at the N-terminal, packstat post-RosettaRelax ≥ 0.65, and alpha-carbon RMSD ≤ 1.2 Å. After
filtering, sequences were selected by lowest model energy post-relax, or lowest Rosetta energy for the baselines and
controls.

TIM-barrel design. Six rounds of residue sampling were run for 25K iterations each. Design was done on a TIM-barrel
template prepared using RosettaRemodel [98, 7]. Rotamers were packed at each iteration using PyRosetta with a pack
radius of 5 Å and extra χ1, χ2 sampling [99]. Residue and rotamer symmetry is enforced by averaging predicted logits
across symmetric positions before normalizing to a discrete distribution and sampling. Cysteines and methionines
were restricted during design. Top sequences were selected by finding local minima of the model residue negative
pseudo-log-likelihood (model energy) over the course of sampling, specifying that the local minima must be below a
5% percentile cutoff of model energy and at least 50 steps apart. Then, the final designs for experimental validation
were selected based on model energy and packstat score and by looking at qualitative design features such as core
packing and polar network formation.

Runtime. The runtime for our method for sequence design is determined primarily by two steps: (1) sampling residues
and rotamer angles and (2) computing the model energy (negative PLL). These times are determined by the speed of
the forward pass of the neural network, which is a function of the batch size, the network architecture, and the GPU
itself. Note that to compute the model energy, a forward pass of the network is done at each residue position where the
environment around that residue has changed.

Annealing for 2500 steps takes between 1 to 2 hours for the native test cases on a computer with 32 GB RAM and on a
single GeForce GTX TITAN X GPU, with other processes running on the machine (Dataset S2). Rosetta-RelaxBB takes
20-30 minutes per design, while Rosetta-FixBB takes 5-15 minutes per design. Compressing the network or modifying
the architecture and parallelizing the sampling procedure across more GPUs would improve the overall runtime. In
addition, a faster annealing schedule and early stopping of optimization would also reduce the runtime.
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Data

To train our classifier, we used X-ray crystal structure data from the Protein Data Bank (PDB) [100], specifically training
on CATH 4.2 S95 domains [64, 65]. We separated domains into train and test sets based on CATH topology classes,
splitting classes into ∼ 95% and 5%, respectively (1374 and 78 classes, 53414 and 4372 domains each, see Dataset S1).
This ensured that sequence and structural redundancy between the datasets was largely eliminated. We first applied a
resolution cutoff of 3.0 Å and eliminated NMR structures from the dataset. During training, we did not excise domains
from their respective chains but instead retained the complete context around a domain. When a biological assembly
was listed for a structure, we trained on the first provided assembly. This was so that we trained primarily on what are
believed to be functional forms of the protein macromolecules, including in some cases hydrophobic protein-protein
interfaces that would otherwise appear solvent-exposed.

The input data to our classifier is a 20× 20× 20 Å
3

box centered on the target residue, and the environment around the
residue is discretized into voxels of volume 1 Å

3
. We keep all backbone atoms, including the Cα atom of the target

residue, and eliminate the Cβ atom of the target residue along with all of its other side-chain atoms. We center the box
at an approximate Cβ position rather than the true Cβ position, based on the average offset between the Cα and Cβ
positions across the training data. For ease of data loading, we only render the closest 400 atoms to the center of the
box.

We omit all hydrogen atoms and water molecules, as well as an array of small molecules and ions that are common in
crystal structures and/or possible artifacts (Dataset S1). We train on nitrogen (N), carbon (C), oxygen (O), sulfur (S),
and phosphorus (P) atoms only. Ligands are included, except those that contain atoms other than N, C, O, S, and P.
Bound DNA and RNA are also included. Rarer selenomethionine residues are encoded as methionine residues. For the
baseline model, we omit all side-chain atoms while training, so that the model conditions only on backbone atoms. For
the conditional model, the input channels include: atom type (N, C, O, S, or P), indicator of backbone (1) or side-chain
(0) atom, and one-hot encoded residue type (masked for backbone atoms for the center residue). For the baseline model,
the input channels only encode atom type, since all atoms are backbone atoms and we assume no side-chain information
is known.

We canonicalize each input residue environment in order to maximize invariance to rotation and translation of the
atomic coordinates. For each target residue, we align the N-terminal backbone N − Cα bond to the x-axis. We then
rotate the structure so that the normal of the N −Cα−C plane points in the direction of the positive z-axis. Finally, we
center the structure at the effective Cβ position. By using this strategy, we not only orient the side-chain atoms relative
to the backbone in a consistent manner (in the positive z-direction), but also fix the rotation about the z-axis. We then
discretize each input environment and one-hot encode the input by atom type.

Model training

Our model is a fully convolutional neural network, with 3D convolution layers followed by batch normalization
[101] and LeakyReLU activation. We regularize with dropout layers with dropout probability of 10% and with L2
regularization with weight 5 × 10−6. We train our model using the PyTorch framework, with orthogonal weight
initialization [102]. We train with a batch size of 2048 parallelized synchronously across eight NVIDIA v100 GPUs.
The momentum of our BatchNorm exponential moving average calculation is set to 0.99. We train the model using the
Adam optimizer (β1 = 0.5, β2 = 0.999) with learning rate 7.5× 10−5 [103] and L2 weight regularization 5× 10−6.
We use the same model architecture and optimization parameters for both the baseline and conditional models.

Our final conditional classifier is an ensemble of four models corresponding to four concurrent checkpoints. Predictions
are made by averaging the logits (unnormalized outputs) from each of the four networks.

Design baselines

The Rosetta-FixBB baseline uses the Rosetta packer [39], invoked via the RosettaRemodel [98] application, to perform
sequence design on fixed backbones. This design protocol performs Monte Carlo optimization of the Rosetta energy
function over the space of amino acid types and rotamers [39]. Between each design round, side-chains are repacked,
while backbone torsions are kept fixed. Importantly, the Rosetta design protocol samples uniformly over residue
identities and rotamers, while our method instead samples from a learned conditional distribution over residue identities.
The Rosetta-RelaxBB protocol is highly similar to the Rosetta-FixBB protocol but performs energy minimization of the
template backbone in addition to repacking between design cycles, allowing the template backbone to move. Starting
templates for both baselines have all residues mutated to alanine, which helps eliminate early rejection of sampled
residues due to clashes. The REF2015 Rosetta energy function was used for all experiments [104, 105].
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Metrics

To assess biochemical properties of interest for the designed sequences we use the following three metrics: (1) packstat,
a non-deterministic measure of tight core residue packing [106], (2) exposed hydrophobics, which calculates the
solvent-accessible surface area (SASA) of hydrophobic residues [73], and (3) counts of buried unsatisfied backbone
(BB) and side-chain (SC) atoms, which are the number of hydrogen bond donor and acceptor atoms on the backbone
and side-chains, respectively, that are not supported by a hydrogen bond. We use PyRosetta implementations of these
metrics. Backbone relaxes for designs were done with the RosettaRelax application [107, 108, 109, 110], with the ex1
and ex2 options for extra χ1 and χ2 rotamer sampling.

Rosetta AbInitio structure prediction

Rosetta AbInitio uses secondary structure probabilities obtained from Psipred [75, 76, 77, 78] to generate a set of
candidate backbone fragments at each amino acid position in a protein. These fragments are sampled via the Metropolis-
Hastings algorithm to construct realistic candidate structures (decoys) by minimizing Rosetta energy. Native test case
runs used Psipred predictions from MSA features after UniRef90 [80] database alignment. TIM-barrel design runs used
Psipred predictions directly from sequence. All designs were selected without using any external heuristics, manual
filtering, or manual reassignments. We obtained Psipred predictions, picked 200 fragments per residue position [86],
and ran 104 trajectories per design. Folding trajectories in Fig. 3 were seeded with native fragments.

Protein Purification

Proteins were produced as fusions to a N-terminal 6xHis tag followed by a Tobacco Etch Virus (TEV) cleavage sequence.
Expression was performed in E. coli BL21(DE3) using the pET24a expression vector under an IPTG inducible promoter.
Proteins were purified with Ni-Sepharose columns (GE Healthcare). Purity and monomeric state were confirmed using
a Superdex 75 size-exclusion column (GE Healthcare) and SDS-PAGE gels. Protein concentration was using predicted
extinction coefficient and 280 nm absorbance measured on a NanoDrop spectrometer (Thermo Scientific).

Circular Dichroism Spectroscopy

Circular Dichroism spectra were collected using a Jasco 815 spectropolarimeter with measurements taken in Phosphate
Buffered Saline (PBS) using a 1.0mm pathlength cuvette. Wavelength scans were collected and averaged over 3
accumulations. Melting curves were collected monitoring CD signal at 222nm over a range of 25◦C to 90◦C at 1◦C
intervals, 1 minute equilibration time and 10 second integration time. Spectra are normalized to mean residue ellipticity
(deg cm2 dmol−1) from millidegrees.
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Movie S1. Examples of model-guided rotamer repacking on native backbone test cases.

Movie S2. Examples of model-guided sequence and rotamer design via annealing on native backbone test cases
and de novo TIM-barrel scaffold.

SI Dataset S1 (dataset_S1.xlsx)

Training information, including excluded ions/ligands, train/test CATH topology classes, and train/test CATH domains

SI Dataset S2 (dataset_S2.xlsx)

Native test case analysis data including rotamer recovery data, sequence design metrics, amino acid distribution data
post-design, decoy ranking, and runtime raw data

SI Dataset S3 (dataset_S3.xlsx)

AbInitio structure prediction raw data for native test cases.

SI Dataset S4 (dataset_S4.xlsx)

TIM-barrel design data, including details on experimentally tested four-fold symmetric designs, forward-folding data,
CD (Circular dichroism) wavelength scans and thermal melt data, and metrics across design sampling runs.

SI Dataset S5 (dataset_S5.zip)

Other data including design scaffolds, rotamer repacking final models, designed sequence models, positionwise
amino acid distributions, AbInitio fragment data, and trRosetta results. Dataset available for download at https:
//drive.google.com/file/d/1yBQ42M4yRWlb4G6vF1QS8__IUfv5eJul/view?usp=sharing

Code for running sequence design algorithm available at https://github.com/nanand2/protein_seq_des.

Additional analysis of model designs

Native test case structures belong to the beta-lactamase (CATH:3.30.450), T-fimbrin (CATH:1.10.418), alpha-beta plait
(CATH:3.30.70), and lipocalin (CATH:2.40.128) topology classes, respectively.
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Amino acid distribution post-design

Model-designed sequences adhere to an amino acid distribution similar to the native sequence and its aligned homologs
(Fig. S4A), with the most pronounced difference being an apparent overuse of lysine (K) and glutamate (E) and
under-use of rarer residues (H, N, Q, W, C) relative to the homolog sequences; Rosetta-FixBB designs also overuse K
and E and under-use H, W, N, and C relative to the native MSA distribution. Like the model, Rosetta protocols match
the native distribution well, with a tendency to overuse small hydrophobic residues, in particular alanine (A), valine(V),
and isoleucine (I). Since the homologous sequences discovered by MSA likely capture amino acid patterns that can
anchor and support the given backbones, the similarity of the distributions suggests that the model designs retain viable
sequence patterns.

Biochemical metrics of interest

We compare our designs to the Rosetta-FixBB and Rosetta-RelaxBB protocol designs, as well as the native idealized
structure, across key metrics (Fig. S5). Since the designs have less than 50% sequence overlap with the native on
average, we also include data for the native sequence with either 50% or 75% of the residues randomly mutated; these
perturbed sequences serve as a negative control and indicate expected performance for likely non-optimal deviations
from the native sequence.

We also report performance across these metrics for designed sequences relaxed with the RosettaRelax protocol. This
procedure allows the backbone and rotamers to move to adopt a lower Rosetta energy conformation. Relaxing the
designs allows us to assess whether alternate rotamers and deviations of the starting protein backbone can lead to an
improvement in performance across the metrics considered.

(1) Packstat. Model designs tend to have a lower packstat score compared to to the native sequence and the Rosetta
designs (Fig. S5A); however, on average the packstat scores are still higher relative to random perturbations of
the native sequence. While this trend seems to indicate that the model designs are less optimal than the Rosetta
designs, when we look at the model designs post-relax (Fig. S5B), the packstat scores improve and better match
those of the native sequence and Rosetta designs, while the perturbed sequence packstat scores remain low. At
the same time, the post-relax alpha-carbon backbone RMSDs between design methods are also comparable (Fig.
S7E). These results suggest that the designed sequences do tightly pack core regions, as slight movements of the
backbone and repacked rotamers for model designs give well-packed structures.

(2) Exposed hydrophobics. Model designs in general do not place exposed hydrophobics in solvent-exposed positions,
similar to the Rosetta designs (Fig. S5C). This trend in the model designs is largely due to the relative abundance of
cytosolic proteins in the PDB compared to membrane proteins, which would in general have hydrophobic regions
exposed to the membrane lipid environment. The native sequence for test case 3mx7 has many exposed hydrophobic
residues, suggesting that the native protein might bind to a target, forming a hydrophobic interface.

(3) Buried unsatisfied backbone atoms. For all of the test cases except 1bkr, model designs have similar or fewer
unsatisfied backbone polar atoms compared to the native sequence (Fig. S5D,E). For 1bkr, although the average
number of unsatisfied backbone polar atoms is greater than that of the native sequence or Rosetta designs, the
distribution is fairly wide, indicating that there are many designs that have fewer unsatisfied backbone polar atoms
compared to the native sequence. However, some of the 50% perturbed sequences have fewer unsatisfied backbone
polar atoms than the native, suggesting that this metric alone is not sufficient for selecting or rejecting designs.

(4) Buried unsatisfied side-chain atoms. Model designs across test cases have few unsatisfied buried side-chain polar
atoms, similar to the native sequences and Rosetta designs (Fig. S5F,G). This indicates that over the course of
sampling, side-chains that are placed in buried regions are adequately supported by backbone hydrogen bonds or by
design of other side-chains that support the buried residue.

Heuristic structure energy

Although the Rosetta energy is not optimized during our design procedure, many of the designs have low Rosetta
energy relative to perturbed sequence baselines (Fig. S7A). After relaxing the model designs, their Rosetta energy
decreases to match the native backbone, with relatively low subsequent backbone deviation; in contrast, sequences that
are 50% similar to native, with random perturbations, have a high Rosetta energy, even after relax (Fig. S7B) The
model energy too is similarly low for the model designs and the Rosetta designs, indicating that the model energy
as a heuristic roughly matches Rosetta in differentiating low-energy vs. high-energy designs (Fig. S7D). Overall,
the alpha-carbon RMSD distributions post-RosettaRelax for the model designs correspond with the native backbone
relaxed distributions (Fig. S7E).
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Figure S1: Classifier performance and learned rotamer distributions. A) Classifier error matrix for individual residue prediction on
test set data and for B) prediction of groups of biochemically similar residues C) Residue-specific prediction accuracy for train and
test set data for the conditional model (top) and baseline model (bottom). D) Rotamer prediction accuracy to within 15, 30, 45, and
60 degrees across train and test set.
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Figure S2: Learned residue-specific rotamer distributions. Binned rotamer distributions for the native test set domains (blue) versus
the model predicted distributions (orange). Native distributions are the normalized empirical rotamer distributions for each residue
across the test set. Model distributions are the average of the network-predicted distributions across the test set examples.
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Figure S3: Rotamer and native sequence recovery. A) Rotamer recovery. n = 5 for all methods. Data shown for rotamer recovery
on crystal structure backbone, as well as backbone relaxed under the Rosetta energy function with constraints to adhere to original
backbone atom placement. Random init – random initialization of chi angles. Baseline model init – initialization with rotamer
prediction by baseline classifier model from backbone alone. Model – 2500 iterations of rotamer sampling and annealing with
conditional model. Rosetta protocols were run either with or without extra chi1 and chi2 sampling (xchi). (Left) Average l2 chi
angle error across design methods. (Right) Average residue side-chain RMSD (Å). B) Native sequence recovery across test case
crystal structures (n = 50, each).
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Figure S4: Additional metrics for assessing model designs. A) Amino acid distribution post-design relative to native sequence
and its aligned homologs (max. 500 hits per sequence). MSAs obtained using PSI-BLAST v2.9, the NR50 database, BLOSUM62
with an E-value cutoff of 0.1. B) Inter-sequence overlap. Average (top) and maximum (bottom) inter-sequence fractional overlap
within and across top sequences from each design method. C) Position-wise accuracy vs. solvent accessibility (SASA) across design
methods for four test cases (n = 50, each). Accuracy with respect to native sequence. Solvent-accessible surface area (SASA)
calculated for native residues [73]. D) Position-wise entropy vs. solvent accessibility (SASA) across design methods for four test
cases (n = 50, each). Solvent-accessible surface area (SASA) calculated for native residues.23
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Figure S5: Biochemical metrics of interest for model designs. Designs (n = 50) compared to native idealized structure (n = 1)
or distribution of relaxed native structures (n = 50). 50% and 75% mutated native sequences included as negative controls. A-B)
Packstat, a measure of core residue packing [106] pre- (A) and post- (B) RosettaRelax [107, 108, 109, 110]. C) Total solvent-
accessible surface area (SASA) of exposed hydrophobic residues [73]. D-E) Number of buried unsatisfied polar backbone (BB)
atoms pre- (D) and post- (E) relax. E-F) Number of buried unsatisfied polar side-chain (SC) atoms pre- (E) and post- (F) relax.
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Figure S6: Additional design metrics across native test cases. n = 50 for all methods. A) Psipred secondary structure prediction for
designed sequences. Cross-entropy of Psipred prediction (helix, loop, sheet) from sequence alone with respect to DSSP assignments
[75, 76, 77, 78, 79, 81]. B) Capping residue placement. Average number of N-terminal helical capping residues across designs
for test cases with capping positions. C) Percent glycines at positive φ backbone positions across test cases. D) Total number of
cis-peptide prolines (ωi−1 < 15) for 1cc8 for designs on crystal structure backbone vs. Rosetta constrained relaxed backbone.
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Figure S7: Energy under the model and under the Rosetta energy function pre- and post-RosettaRelax. 50% and 75% mutated native
sequences included as negative controls. Designs (n = 50) compared to native idealized structure (n = 1) or distribution of relaxed
native structures (n = 50). A-B) Rosetta energy pre- (A) and post- (B) relax. C-D) Model energy (negative pseudo-log-likelihood,
normalized by protein length) pre- (C) and post- (D) relax. E) Alpha-carbon RMSD (Å) post-RosettaRelax.
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PROTEIN SEQUENCE DESIGN WITH A LEARNED POTENTIAL

Figure S8: Blind structure prediction of designed sequences. Native sequences and selected designs were forward folded using
Rosetta AbInitio for four design test cases. 50% randomly perturbed native sequences included as a negative control. (Left) Folded
structure with best summed rank of template-RMSD and Rosetta energy across 104 folding trajectories. Decoys (yellow) are aligned
to the idealized native backbones (blue). Sequence identity and RMSD (Å) compared to native are reported below the structures.
For Rosetta-RelaxBB, RMSD of selected design to relaxed structure post-design is given in parentheses. (Right) Rosetta energy
vs. RMSD (Å) to native funnel plots. RMSD is calculated with respect to the idealized and relaxed native crystal structure. For
Rosetta-RelaxBB, RMSD in funnel plot is with respect to relaxed structure post-design. Selected structure with best summed rank of
template-RMSD and Rosetta energy is shown in orange. The design after RosettaRelax is shown in green.
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